DOI QR코드

DOI QR Code

QTL Analysis Related to the Palatability Score According to Rice-polishing

도정정도에 따른 식미치 관련 QTL 분석

  • Park, Young-hie (Korea National Open University) ;
  • Kim, Kyung-Min (Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University)
  • Received : 2018.02.23
  • Accepted : 2018.03.08
  • Published : 2018.03.30

Abstract

We analyzed QTLs for alkali-related digestion by using 120 population crossed Cheongcheong and Nagdong derived from anther culture (CNDH). The DNA markers located in the QTLs gene were selected and applied to existing cultivars. As a result of the investigation of the alkali decay degree, brown rice of Cheongcheong and Nagdong was 1.9 and 1.6, respectively, and the CNDH was $3.79{\pm}2.01$, and the distribution of variance was distributed to 7.0-1.0. The milled rice of Cheongcheong and Nagdong was 5.6 and 4.1, respectively. The mean of the CNDH was $4.86{\pm}1.55$, and the distribution of variance was distributed to 7.0-2.0. Variation distribution curves showed continuous variation that was close to non-normal distribution. In the QTLs analysis, qBRA2, qBRA6, and qBRA11 were mapped in 1-2 replications of brown rice. QHRA2-1, qHRA2-2, qHRA2-3, qHRA3, and qHRA8 were mapped in the first replication. QHRA2-1, qHRA2-2, qHRA2-3 and qHRA3 were mapped in the second replicates. And mapped to qHRA5 in 4 replicates. These were found on chromosome 2, 3, 6, 8 and 11, respectively. The phenotypic variations of qBRA2, qBRA6, and qBRA11 on the chromosomes of brown and milled rice were 1-9%. The polymorphism was analyzed for 12 types of the japonica type and six types of the indica type, based on the nine markers found in the QTLs analysis of alkali digestion. Chromosome 11, RM27258, was selected to determine the segregation ratio, which shows the difference in size by the band pattern. The results of this study will be used as basic data for the development of high-quality rice cultivars.

본 실험은 청청과 낙동 조합을 약배양하여 육성한 120 계통을 이용하여 식미치 관련 알칼리붕괴도에 대한 QTLs를 분석하고 탐색된 QTLs 유전자에 위치한 DNA 마카를 선발하여 기존 품종에 적용하여 다음과 같은 결과를 얻었다. CNDH 계통을 이용하여 알칼리붕괴도 변이를 조사한 결과 통일형 품종인 청청과 자포니카형 품종인 낙동 현미는 각각 1.9, 1.6를 보였으며 CNDH 계통은 $3.79{\pm}2.01$를 보였으며 변이 분포는 7.0-1.0까지 분포하였다. 모부본인 청청과 낙동 백미는 각각 5.6, 4.1를 보였으며 CNDH 집단의 평균은 $4.86{\pm}1.55$ 보였으며, 변이 분포는 7.0-2.0까지 분포하였다. 변이 분포 곡선은 비정규분포에 가까운 연속변이를 나타내었다. QTLs 분석에서 현미 1,2 반복에서 qBRA2, qBRA6, qBRA11, 백미 1반복에서 qHRA2-1, qHRA2-2, qHRA2-3, qHRA3, qHRA8, 2반복에서 qHRA2-1, qHRA2-2, qHRA2-3, qHRA3, 4반복에서 qHRA5으로, 이들은 각각 2번, 3번, 6번, 8번, 11번 염색체상에 탐색되었다. 현미, 백미 각 염색체상의 qBRA2, qBRA6, qBRA11의 표현형 변이는 1-9% 분포되었다. 알칼리붕괴도 관련 QTLs 분석 결과에서 탐색된 9개 marker를 토대로 모부본인 청청, 낙동을 기준으로 자포니카형 12품종, 인디카형 6품종에 다형성을 분석하였다. 밴드양상으로 크기에 차이를 보이는 분리비에 적합한 11번 염색체 RM27258을 선발하였다. 이상의 연구결과는 앞으로 미질이 좋은 벼 품종 개발하는데 기초자료로 이용 될 것 이다.

Keywords

References

  1. Choe, Z. R. and Heu, M. H. 1975. Optimum conductions for alkali digestivity test in rice. Kor. J. Crop Sci. 19, 7.
  2. Han, S. I., Seo, W. D., Park, J. Y., Park, D. S., Cho, J. H., Lee, J. H., Seo, K. H., Sim, E. Y. and Nam, M. H. 2015. Characteristics of pop-rice and rice tea using black sticky rice with giant embryo. J. Life Sci. 25, 68-74. https://doi.org/10.5352/JLS.2015.25.1.68
  3. Heu, M. H. and Park, S. Z. 1979. Genetic behavior of alkali digestibility in rice endosperm. I. Alkali digestibility of hybrid seed and F2 grains in the crosses between low and high ADV parents. Kor. J. Breed. 11, 196-200.
  4. Juliano, B. O. 1985. Criteria and tests for rice grain qualities. In rice: Chemistry and Technology. AACC, USA : 443-524.
  5. Juliano, B. O. 2003. Rice chemistry and quality. Philippine Rice 7. Research Institute. 215-220.
  6. Kang, H. J., Cho, Y. G., Lee, Y. T., Kim, Y. D., Eun, M. Y. and Shim, J. U. 1998. QTL mapping of genes related with grain chemical properties based on molecular map of rice. Kor. J. Crop Sci. 43, 199-204.
  7. Kim, H. Y. and Kim, K. M. 2016. Mapping of grain alkali digestion trait using a Cheongcheong/Nagdong doubled haploid population in rice. J. Plant Biotechnol. 43, 76-81. https://doi.org/10.5010/JPB.2016.43.1.76
  8. Kwak, T. S. 2009. Variation of amylose, Protein, alkali digestion value, and moisture contents in rice varietal groups classified by the days from seedling to heading. Kor. J. Intl. Agri. 21, 28-32.
  9. Kwak, T. S., Yeo, J. H., Eun, M. Y. and Cha, Y. S. 2004. QTL for quality properties in the Milyang23 x Gihobyeo recombinant inbred lines by different locations. Kor. J. Crop Sci. 449, 539-545.
  10. Lee, J. H., Cho, Y. S., Jung, K. H., Yang, S. J., Hwang, H. G., Kim, N. S. and Choi, H. C. 2000. Analysis of quantitative trait Loci (QTL) related to rice alkali digestion value and amylose content. Kor. J. Genetics 22, 71-79.
  11. McCouch, S. R., Cho, Y. G., Yano, M., Paul, E., Blinstrub, M., Morishima, H. and Kinoshita, T. 2003. Rice report on QTL nomenclature. Http://www.gramene.org/newsletters.
  12. Tsunematsu, H. A., Yoshimura, M. and Iwata, N. 1996. QTL analysis using R1 lines in rice. Rice Genetics III pp. 619-623.
  13. Wacera, H. R., Safitri, F. A., Lee, H. S., Yun, B. W. and Kim, K. M. 2015. Genetic Mapping of QTLs that control grain characteristics in rice (Oryza sativa L.). J. Life Sci. 25, 925-931. https://doi.org/10.5352/JLS.2015.25.8.925
  14. Xiao, J., Li, J., Yuan, L. and Iwata, N. 1996. Identification of QTLs affecting traits of agronmic in a recombinant inbred population derived from a subspecific rice cross. Theor. Appl. Genet. 92, 260-244.
  15. Zeng, Z. B. 1994. Precision mapping of quantitative trait loci. Genetics 136, 1457-1468.