DOI QR코드

DOI QR Code

Liquid crystal alignment on rubbed self-assembled monolayers with fluorinated alkyl chain

  • Oh, Chan-Woo (School of Electrical, Electronic and Control Engineering, Changwon National University) ;
  • Hwang, Seok-Gon (School of Electrical, Electronic and Control Engineering, Changwon National University) ;
  • Park, Sang-Geon (Division of Smart Electrical and Electronic Engineering, Silla University) ;
  • Park, Hong-Gyu (School of Electrical, Electronic and Control Engineering, Changwon National University)
  • 투고 : 2018.11.05
  • 심사 : 2018.11.21
  • 발행 : 2018.12.29

초록

In this paper, we investigated the vertical alignment characteristics of liquid crystals (LCs) on fluorinated self-assembled monolayers (FSAMs). For comparison, a commercialized homeotropic polyimide (PI) layer was used as an LC alignment layer. We confirmed the successful deposition of FSAMs and the change of FSAMs before and after rubbing treatment through contact angle measurement and atomic force microscopy. The optical transmittance spectrum of the FSAMs is similar to that of the homeotropic PI layer, which is a superior optical characteristic applicable to LC devices. When FSAMs were applied to the vertically aligned (VA) LC cell, uniform and vertical LC alignments were achieved. In addition, the voltage-transmittance characteristic of VA LC cell with FSAMs was superior to that of VA LC cell with the conventional homeotropic PI layers. These results indicate that the FSAMs are suitable as the homeotropic LC alignment layer for enhanced LC devices.

키워드

JBJTBH_2018_v11n6_671_f0001.png 이미지

Fig. 1. Contact angles of the homeotropic PI layers and FSAMs before and after rubbing treatment: (a-b) homeotropic PI and (c-d) FSAM.

JBJTBH_2018_v11n6_671_f0002.png 이미지

Fig. 2. AFM images of the homeotropic PI layers and FSAMs before and after rubbing treatment: (a-b) homeotropic PI and (c-d) FSAM.

JBJTBH_2018_v11n6_671_f0003.png 이미지

Fig. 3. Optical transmittance spectra of the LC cells with the homeotropic PI layers and FSAMs.

JBJTBH_2018_v11n6_671_f0004.png 이미지

Fig. 4. LC orientations and pretilt angles: Photomicrographs of LC cells with (a) the homeotropic PI layer and (b) FSAMs (A: analyzer; P: polarizer) and the rotational transmittance curves obtained from the pretilt angle measurement (blue curve: simulated curve; red curve: experimental curve).

JBJTBH_2018_v11n6_671_f0005.png 이미지

Fig. 5. Voltage-transmittance curve of VA LC cells with the homeotropic PI layers and FSAMs.

참고문헌

  1. H.-Y. Cheong, T.-W. Kim, C.-H. Choi, "Implementation of 3D virtual space documents using image information in real time", J. Korea Inst. Inf. Electron. Commun. Technol. Vol. 11, pp. 40-44, 2018.
  2. M. Oh-e and K. Kondo, "Response mechanism of nematic liquid crystals using the in-plane switching mode", Appl. Phys. Lett. Vol. 69, pp. 623-625, 1996. https://doi.org/10.1063/1.117927
  3. H.-G. Park, H.-J. Kim, M.-S. Kim, I.-H. Lee, and D.-S. Seo, "Electro-optical characteristics of ZrO2 nanoparticle doped liquid crystal on ion-beam irradiated polyimide layer", J. Nanosci. Nanotechnol. Vol. 12, pp. 5587-5591, 2012. https://doi.org/10.1166/jnn.2012.6254
  4. B. Liu, Y. Ma, D. Zhao, L. Xu, F. Liu, W. Zhou, L. Guo, "Effects of morphology and concentration of CuS nanoparticles on alignment and electro-optic properties of nematic liquid crystal", Nano Res. Vol. 10, pp. 618-625, 2017. https://doi.org/10.1007/s12274-016-1321-5
  5. J. Cognard, "Alignment of nematic liquid crystals and their mixtures", Mol. Cryst. Liq. Cryst. Suppl. Vol. 78, Chap. 1, pp. 6, 1982.
  6. H. Matsuda, D.-S. Seo, N. Yoshida, K. Fujibayashi, S. Kobayashi, and Y. Yabe, "Estimation of the static electricity and optical retardation produced by rubbing polyimide and polyamide films with different fabrics", Mol. Cryst. Liq. Cryst. Vol. 264, pp. 23-28, 1995. https://doi.org/10.1080/10587259508037298
  7. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stohr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, "Atomic-beam alignment of inorganic materials for liquid-crystal displays", Nature Vol. 411, pp. 56-59, 2001. https://doi.org/10.1038/35075021
  8. J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, "Liquid crystal alignment on carbonaceous surfaces with orientational order", Science Vol. 292, pp. 2299-2302, 2001. https://doi.org/10.1126/science.1059866
  9. P. J. Martin, A. Bendavid, C. Comte, H. Miyata, Y. Asao, Y. Ishida, A. Sakai, "Alignment and switching behaviors of liquid crystal on a-SiOx thin films deposited by a filtered cathodic arc process", Appl. Phys. Lett. Vol. 91, 063516, 2007. https://doi.org/10.1063/1.2768308
  10. H.-G. Park, Y.-H. Kim, B.-Y. Oh, W.-K. Lee, B.-Y. Kim, and D.-S. Seo, "Vertically aligned liquid crystals on a ${\gamma}$-Al2O3 alignment film using ion-beam irradiation", Appl. Phys. Lett. Vol. 93, 233507, 2008. https://doi.org/10.1063/1.3046728
  11. H.-G. Park, Y.-H. Kim, B.-Y. Kim, D.-H. Kim, H. Yoon, and D.-S. Seo, "Van der Waals force contribution to the vertical alignment of liquid crystal on Al2O3 films using ion-beam method", Thin Solid Films Vol. 519, pp. 5654-5657, 2011. https://doi.org/10.1016/j.tsf.2011.03.017
  12. J. B. Kim, K. C. Kim, H. J. Ahn, B. H. Hwang, D. C. Hyun, and H. K. Baik, "Variable liquid crystal pretilt angles on various compositions of alignment layers", Appl. Phys. Lett.. Vol. 90, 043515, 2007. https://doi.org/10.1063/1.2432272
  13. J.-W. Lee, B.-M. Moon, K.-M. Lee, Y.-H. Kim, H.-G. Park, J.-H. Lim, B.-Y. Oh, B.-Y. Kim, J.-Y. Hwang, C.-H. Ok, D.-S. Seo, and J.-M. Han, "Homogeneous liquid crystal orientation on ion beam exposure TiO2 surfaces depending on an anisotropic dipole field", Liq. Cryst. Vol. 37, pp. 279-284, 2010. https://doi.org/10.1080/02678290903564411
  14. J. H. Lee, E.-M. Kim, G.-S. Heo, H.-C. Jeong, D. H. Kim, D. W. Lee, J.-M. Han, T. W. Kim, D.-S. Seo, "Ion-beam-induced surface modification of solution-derived indium-doped zinc oxide film for a liquid crystal device with stable and fast switching properties", Opt. Mater. Vol. 84, pp. 209-214, 2018. https://doi.org/10.1016/j.optmat.2018.07.008
  15. D. M. Walba, C. A. Liberko, E. Korblova, M. Farrow, T. E. Furtak, B. C. Chow, D. K. Schwartz, A. D. Freeman, K. Douglas, S. D. Williams, A. F. kittnick, N. A. Clak, "Self-assembled monolayers for liquid crystal alignment: simple preparation on glass using alkyltrialkoxysilanes", Liq. Cryst. Vol. 31, pp. 481-489, 2004. https://doi.org/10.1080/02678290410001666075
  16. G. Fang, Y. Shi, J. E. Maclennan, N. E. Clark, M. J. Farrow, D. M. Walba, "Photo-reversible liquid crystal alignment using azobenzene-based self-assembled monolayers: comparison of the bare monolayer and liquid crystal reorientation dynamics", Langmuir Vol. 26, pp. 17482-17488, 2010. https://doi.org/10.1021/la102788j
  17. S.-G. Hwang, H.-G. Park, M.-H. Park, and S.-G. Park, "Homeotropic alignment behavior of liquid crystal molecules on self-assembled monolayers with fluorinated alkyl chain", J. Vac. Sci. Technol. A Vol. 36, 041401, 2018. https://doi.org/10.1116/1.5028327
  18. S.-G. Park, and H.-G. Park, "Alignment of liquid crystal molecules on self-assembled monolayer with fluorinated alkyl chain at different deposition time", Opt. Mater. Vol. 85, pp. 298-302, 2018. https://doi.org/10.1016/j.optmat.2018.08.068
  19. Gyoo-Seok Choi, 'Development of Drive Method for Gray scale Representation by Liquid Powder Display Panel', The Journal of The Institute of Internet, Broadcasting and Communication VOL. 9 No. 1, 2009