DOI QR코드

DOI QR Code

An Experimental and Numerical Study on the Survivability of a Long Pipe-Type Buoy Structure in Waves

긴 파이프로 이뤄진 세장형 부이 구조물의 파랑 중 생존성에 관한 모형시험 및 수치해석 연구

  • Kwon, Yong-Ju (Korea Research Institute of Ships & Ocean Engineering (KRISO)) ;
  • Nam, Bo-Woo (Korea Research Institute of Ships & Ocean Engineering (KRISO)) ;
  • Kim, Nam-Woo (Korea Research Institute of Ships & Ocean Engineering (KRISO)) ;
  • Park, In-Bo (Korea Research Institute of Ships & Ocean Engineering (KRISO)) ;
  • Kim, Sea-Moon (Korea Research Institute of Ships & Ocean Engineering (KRISO))
  • Received : 2018.10.25
  • Accepted : 2018.12.06
  • Published : 2018.12.31

Abstract

In this study, experimental and numerical analysis were performed on the survivability of a long pipe-type buoy structure in waves. The buoy structure is an articulated tower consisting of an upper structure, buoyancy module, and gravity anchor with long pipes forming the base frame. A series of experiment were performed in the ocean engineering basin of KRISO with the scaled model of 1/ 22 to evaluate the survivability of the buoy structure at West Sea in South Korea. Survival condition was considered as the wave of 50 year return period. Additional experiments were performed to investigate the effects of current and wave period. The factors considered for the evaluation of the buoy's survival were the pitch angle of the structure, anchor reaction force, and the number of submergence of the upper structure. Numerical simulations were carried out with the OrcaFlex, the commercial program for the mooring analysis, with the aim of performing mutual validation with the experimental results. Based on the evaluation, the behavior characteristics of the buoy structure were first examined according to the tidal conditions. The changes were investigated for the pitch angle and anchor reaction force at HAT and LAT conditions, and the results directly compared with those obtained from numerical simulation. Secondly, the response characteristics of the buoy structure were studied depending on the wave period and the presence of current velocity. Third, the number of submergence through video analysis was compared with the simulation results in relation to the submergence of the upper structure. Finally, the simulation results for structural responses which were not directly measured in the experiment were presented, and the structural safety discussed in the survival waves. Through a series of survivability evaluation studies, the behavior characteristics of the buoy structure were examined in survival waves. The vulnerability and utility of the buoy structure were investigated through the sensitivity studies of waves, current, and tides.

본 논문에서는 긴 파이프 이뤄진 세장형 부이 구조물의 파랑 중 거동특성에 관한 모형시험과 수치해석 연구를 수행하였다. 대상 부이 구조물은 긴 파이프를 기본 뼈대로 하여, 상부구조물, 부력재, 중력식 앵커로 구성된 아티큘레이트(Articulated)형 부이 구조물이다. 대상 해역인 서해에서의 본 부이 구조물의 생존성을 평가하기 위하여, 축척비 1/22의 축소 모형을 제작하여 선박해양플랜트연구소 해양공학수조에서 일련의 모형시험을 진행하였다. 이 때 50년 재현주기의 극한파 조건을 고려하였으며, 또한 조류 및 주기 효과를 검토하기 위하여 추가적인 실험을 수행하였다. 생존성 평가를 위한 주된 평가항목으로는 구조물의 거동, 앵커 지지력, 침수 횟수를 고려하였다. 모형시험 결과와의 상호검증을 수행하기 위하여 상용계류해석 프로그램인 OrcaFlex를 이용하여 수치 시뮬레이션을 병행하였다. 평가결과로써 먼저 조위차에 따른 본 부이 구조물의 거동 특성에 대해 살펴보았다. 고조위와 저조위 조건에서의 종동요 응답, 앵커지지력의 변화를 살펴보았으며, 수치 시뮬레이션 결과와의 직접 비교 검토하였다. 두 번째로는 파도 주기와 조류의 유무에 따른 부이 구조물의 응답 특성 변화에 대해 고찰하였다. 세 번째로는 상부구조물의 침수와 관련하여 비디오 분석을 통한 침수 횟수를 수치해석 결과와 비교 제시하였다. 마지막으로 모형시험에서 직접 계측하지 못한 구조응답과 관련하여 수치 시뮬레이션 결과를 제시하고, 극한파 중 구조적 안전성에 대해서 논하였다. 일련의 생존성 평가 연구를 통하여 본 부이 구조물의 극한파 중 거동 특성에 대해 살펴볼 수 있었으며, 파도, 조류, 조위차에 따른 민감도 특성을 통해 본 부이구조물의 취약점 및 활용성에 대해 고찰해 보고자 하였다.

Keywords

GHMHD9_2018_v42n6_427_f0001.png 이미지

Fig. 1 Long pipe type buoy

GHMHD9_2018_v42n6_427_f0002.png 이미지

Fig. 2 Wave spectra [left : IRW01, right : IRW02]

GHMHD9_2018_v42n6_427_f0003.png 이미지

Fig. 3 Experimental set-up & measurement

GHMHD9_2018_v42n6_427_f0004.png 이미지

Fig. 4 Simulation model [left : side view, right : bird view]

GHMHD9_2018_v42n6_427_f0005.png 이미지

Fig. 5 Snapshots of the buoy structure under HAT and LAT conditions (IRW03)

GHMHD9_2018_v42n6_427_f0006.png 이미지

Fig. 6 Time series of pitch motion and anchor force of the buoy (IRW03)

GHMHD9_2018_v42n6_427_f0007.png 이미지

Fig. 7 Comparisons of pitch motion statistics of the buoy

GHMHD9_2018_v42n6_427_f0008.png 이미지

Fig. 8 Comparisons of statistics of the anchor force

GHMHD9_2018_v42n6_427_f0009.png 이미지

Fig. 9 Time series of pitch motion of the buoy in HAT condition

GHMHD9_2018_v42n6_427_f0010.png 이미지

Fig. 10 Comparisons of motion statistics in HAT (Left : Wave period effects, right : current effects)

GHMHD9_2018_v42n6_427_f0011.png 이미지

Fig. 11 Calculation results on minimum pitch angle according to the change of wave period and current velocity in HAT (Left : Wave period effects, right : current effects)

GHMHD9_2018_v42n6_427_f0012.png 이미지

Fig. 12 Time series of anchor force of the buoy in HAT condition

GHMHD9_2018_v42n6_427_f0013.png 이미지

Fig. 13 Comparisons of maximum anchor force (HAT)

GHMHD9_2018_v42n6_427_f0014.png 이미지

Fig. 14 Snapshots on submergence of a equipment

GHMHD9_2018_v42n6_427_f0015.png 이미지

Fig. 15 Comparisons of number of submergence per hour (left : HAT, right : LAT)

GHMHD9_2018_v42n6_427_f0016.png 이미지

Fig. 16 Effects of the drag coefficient on the number of submergence per hour in HAT conditions.

GHMHD9_2018_v42n6_427_f0017.png 이미지

Fig. 17 Maximum von mises stress along the pipe length

GHMHD9_2018_v42n6_427_f0018.png 이미지

Fig. 18 Relation between minimum pitch angle and maximum von mises stress

Table 1 Main dimension of the upper structure and the floater

GHMHD9_2018_v42n6_427_t0001.png 이미지

Table 2 Main dimension of the long pipe type buoy

GHMHD9_2018_v42n6_427_t0002.png 이미지

Table 3 Environmental conditions

GHMHD9_2018_v42n6_427_t0003.png 이미지

References

  1. Berteanx, H.O.(1976), "Buoy Engineering", Woods Hole Oceanographic Institution.
  2. Gao, Z. and Moan, T.(2009), "Mooring system analysis of multiple wave energy converters in a farm configuration", Proceedings of the 8th European Wave and Tidal Energy Conference (EWTEC), EWTEC2009, Uppsala, Sweden, pp. 509-518.
  3. Kim, J. R., Lee. H. B., Cho, I. H., Kyong, N. H. and Boo, S. Y.(2017), "Conceptual Design of Moored Floating Meterological Buoy with LiDAR", Journal of Ocean Engineering and Technology, Vol. 31, No. 5, pp. 325-334. https://doi.org/10.26748/KSOE.2017.10.31.5.325
  4. Kim, K. H., Hong, J. P., Park, S. W., Lee, K. S. and Hong, K. Y.(2016), "An Experimental Study on Dynamic Performance of Large Floating Wave-Offshore Hybrid Power Generation Platform in Extreme Conditions", Journal of Korean Society for Marine Environment and Energy, Vol. 19, No. 1, pp. 7-17. https://doi.org/10.7846/JKOSMEE.2016.19.1.7
  5. OrcaFlex (2017), "Orcaflex user manual", www.orcina.com
  6. Park, H. I. and Shin, M. G.(2003), "Characteristic Analysis of Ocean Observation Buoys for Application to Seas around Korea Peninsula", Proceedings of the Korean Society for Marine Environment and Energy, pp. 267-273.
  7. Park, J. Y., Shin, S. H., Cheon, H. J., Son, J. M., Nam, B. W. and Song, J. H.(2013), "Experimental Study for Mooring System Survivability of Floating Pendulum Wave Energy Converter", Proceedings of the Korean Society for Marine Environment and Energy, p. 203.
  8. Williams, A. N. and McDougal, W. G.(2013), "EXPERIMENTAL VALIDATION OF A NEW SHALLOW WATER CALM BUOY DESIGN", Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, OMAE2013, June 9-14, Nantes, France, OMAE2013-11392.