Fig. 1. ANN implementation steps
Fig. 2. Program general overview
Fig. 3. Input module layout
Fig. 4. General structure of ANN
Fig. 5. Displacement sub module
Fig. 6. Displacement sub module
Fig. 7. Wall and support sub module
Fig. 8. Excavation case description
Fig. 9. CIP wall parameter description
Fig. 10. SCW parameter description
Fig. 11. Groundwater submodule results comparison with SeepW
Fig. 12. Displacement submodule results comparison with Plaxis
Fig. 13. Wall and support submodule results comparison with GeoXD
Table 1. General input used in ANNs training
Table 2. General ground material properties
Table 3. Data ranges wall and ground displacement and wall and support member forces DBs
Table 4. Data ranges ground water drawdown DB
Table 5. Data ranges ground water drawdown DB
Table 6. Ground and support input parameters
Table 7. Strut parameters
Table 8. H-Pile wall parameters
Table 9. CIP wall parameters
Table 10. SCW parameters
Table 11. Validation results for groundwater submodule
Table 12. Validation results for displacement submodule
Table 13. Validation results for wall and support submodule
Table 14. Stability check results for CIP and H-Pile Walls
Table 15. Stability check results for SCW
참고문헌
-
Acharyya, R., Dey, A. and Kumar, B. (2018), "Finite element and ANN-based prediction of bearing capacity of square footing resting on the crest of
$c-{\varphi}$ soil slope", International Journal of Geotechnical Engineering, 1-12. - Chan, W., Chow, Y. and Liu, L. (1995), "Neural network : An alternative to pile driving formulas", Computer and Geotechnics, 17, 135-156. https://doi.org/10.1016/0266-352X(95)93866-H
- Farrokhzad, F., Barari, A., Ibsen, L. and Choobbasti, A. (2011), "Predicting subsurface soil layering and landslide risk with Artificial Neural Networks: a case study from Iran". GEOLOGICA CARPATHICA, 62(5), 477-485. https://doi.org/10.2478/v10096-011-0034-7
- Khatami, S., Mirhabibi, A., Khosravi, A. and Nahavandi, S. (2001), "Artificial Neural Network Applications in Geotechnical Engineering". Australian Geomechanics, 49-62.
- Kim, C., Bae, G., Hong, S., Park, C., Moon, H. and Shin, H. (2001), "Neural network based prediction of ground surface settlements due to tunnelling", Computers and Geotechnics, 28, 517-547. https://doi.org/10.1016/S0266-352X(01)00011-8
- Kung, G., Hsiao, E., Schuster, M., and Juang, C. (2007), "A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays", Computers and Geotechnics, 34, 385-396. https://doi.org/10.1016/j.compgeo.2007.05.007
- Rastbood, A., Majdi, A. and Gholipur, Y. (2017), "Prediction of structural forces of segmental tunnel lining using FEM based artificial neural network", International Journal of Mining and Geo-Engineering, 1(51), 71-78.
- Shahin, M., Jaksa, M. and Maier, H. (2001), "Artificial neural network applications in geotechnical engineering", Australian Geomechanics, 49-62.
- Yoo, C. and Kim, J. (2007), "Tunneling performance prediction using an integrated GIS and neural network". Computers and Geotechnics, 34, 19-30. https://doi.org/10.1016/j.compgeo.2006.08.007
- Yoo, C., Jeon, Y. and Choi, B. (2006), "IT-based tunnelling risk management system (IT-TURISK) - Development and implementation". Tunnelling and Underground Space Technology, 21, 190-202. https://doi.org/10.1016/j.tust.2005.05.002
- Yoo, C., You, K. and Park, I. (2010), "Development and implementation of knowledge-based underground excavation design system", Internation journal of Geo-Engineering, 2(1), 21-27.
피인용 문헌
- Development of AI-based Prediction and Assessment Program for Tunnelling Impact vol.18, pp.4, 2018, https://doi.org/10.12814/jkgss.2019.18.4.039