DOI QR코드

DOI QR Code

Corrosion of Fe-Cr Steels at 600-800℃ in NaCl Salts

  • Lee, Dong Bok (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Kim, Min Jung (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Yadav, Poonam (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Xiao, Xiao (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • Received : 2018.11.02
  • Accepted : 2018.11.20
  • Published : 2018.12.31

Abstract

NaCl-induced hot corrosion behavior of ASTM T22 (Fe-2.25Cr-1Mo), T91 (Fe-9Cr-1Mo), T92 (Fe-9Cr-1.8W-0.5Mo), 347HFG (Fe-18-Cr-11Ni), and 310H (Fe-25Cr-19Ni) steels was studied after spraying NaCl on the surface. During corrosion at $600-800^{\circ}C$ for 50-100 h, thick, non-adherent, fragile, somewhat porous oxide scales formed. All the alloys corroded fast with large weight gains owing to fast scaling and destruction of protective oxide scales. Corrosion rates increased progressively as the corrosion temperature and time increased. Corrosion resistance increased in the order of T22, T91, T92, 347HFG, and 310H, suggesting that the alloying elements of Cr, Ni, and W beneficially improved the corrosion resistance of steels. Basically, Fe oxidized to $Fe_2O_3$, and Cr oxidized to $Cr_2O_3$, some of which further reacted with FeO to form $FeCr_2O_4$ or with NiO to form $NiCr_2O_4$.

Keywords

PMGHBJ_2018_v51n6_354_f0001.png 이미지

Fig. 1. Weight gain versus corrosion time curves of steels after corrosion in NaCl. (a) 600℃, (b) 700℃, (c) 800℃.

PMGHBJ_2018_v51n6_354_f0002.png 이미지

Fig. 2. X-ray diffraction patterns after corrosion at 700℃ for 100 h. (a) T22 (Fe-2.25Cr-1Mo), (b) T91 (Fe-9Cr-1Mo), (c) T92 (Fe-9Cr-1.8W-0.5Mo), (d) 347HFG (Fe-18Cr-11Ni), (e) 310H (Fe-25Cr-19Ni).

PMGHBJ_2018_v51n6_354_f0003.png 이미지

Fig. 3. T22 (Fe-2.25Cr-1Mo) steel after corrosion at 700℃ for 100 h. (a) SEM cross-sectional image, (b) EDS line profiles along A-B.

PMGHBJ_2018_v51n6_354_f0004.png 이미지

Fig. 4. SEM cross-sectional images after corrosion. (a) T91 (Fe-9Cr-1Mo) at 600℃ for 100 h, (b) T92 (Fe-9Cr-1.8W-0.5Mo) at 600℃ for 100 h, (c) T91 (Fe-9Cr-1Mo) at 800℃ for 50 h, (d) T92 (Fe-9Cr-1.8W-0.5Mo) at 800℃ for 50 h.

PMGHBJ_2018_v51n6_354_f0005.png 이미지

Fig. 5. T92 (Fe-9Cr-1.8W-0.5Mo) steel after corrosion at 700℃ for 100 h. (a) SEM cross-sectional image, (b) EDS line profiles along A-B.

PMGHBJ_2018_v51n6_354_f0006.png 이미지

Fig. 6. 347HFG (Fe-18Cr-11Ni) steel after corrosion at 700℃ for 100 h. (a) SEM cross-sectional image, (b) EDS line profiles along A-B.

PMGHBJ_2018_v51n6_354_f0007.png 이미지

Fig. 7. 310H (Fe-25Cr-19Ni) steel after corrosion at 700℃ for 100 h. (a) SEM cross-sectional image, (b) EDS line profiles along A-B.

Table 1. Nominal compositions of chromium steels (wt.%)

PMGHBJ_2018_v51n6_354_t0001.png 이미지

References

  1. J. Sui, J. Lehmusto, M. Bergelin, M. Hupa, The effects of KCl, NaCl and $K_2CO_3$ on the high-temperature oxidation onset of Sanicro 28 steel, Oxid. Met. 85 (2016) 565-598. https://doi.org/10.1007/s11085-016-9613-4
  2. D. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, USA (2008) 383-390.
  3. N. Birks, G. H. Meier and F. S. Pettit, High-Temperature Oxidation of Metals, Cambridge University Press, UK (2006) 205-252.
  4. F. S. Pettit, C. S. Giggins, Hot Corrosion in: Superalloys II, edtied by C. T. Sims, N. S. Stoloff, W. C. Hagel, John Wiley & Sons, NY (1987) 327-358.
  5. M. Spiegel, Corrosion in molten salts in: Shreir's Corrosion, fourth edn., edited by R. A. Cottis, M. J. Graham, R. Lindsay, S. B. Lyon, J. A. Richardson, J. D. Scantlebury, F. H. Stott, Elsevier, UK (2010), Vol. 1, pp. 316-330.
  6. N. Hiramatsu, Y. Uematsu, T. Tanaka, M. Kinugasa, Effects of alloying elements on NaCl-induced hot corrosion of stainless steels, Mater. Sci. Eng. A120, 1989, 319-328.
  7. S. Karlsson, J. Pettersson, L.-G. Johansson, J.-E. Svensson, Alkali induced high temperature corrosion of stainless steel: The influence of NaCl, KCl and CaCl2, Oxid. Met. 78 (2012) 83-102. https://doi.org/10.1007/s11085-012-9293-7
  8. H. J. Grabke, M. Spiegel, A. Zahs, Role of alloying elements and carbides in the chlorine-induced corrosion of steels and alloys. Mater. Res. 7 (2004) 89-95. https://doi.org/10.1590/S1516-14392004000100013
  9. L. Yang, C. Bo, W. Junwei, W. Zhiping, L. Wensheng, Corrosion behavior of Cr, Fe and Ni based superalloy in molten NaCl, Rare Met. Mater. Eng. 43 (2014) 17-23. https://doi.org/10.1016/S1875-5372(14)60044-8
  10. R. D. K. Misra, R. Sivakumar, Effect of NaCl vapor on the oxidation of Ni-Cr alloys, Oxid. Met. 25 (1986) 83-92. https://doi.org/10.1007/BF00807997
  11. Y. Shinata, F. Takahashi, K. Hashiura, NaCl-induced hot corrosion of stainless steels, Mater. Sci. Eng. 87 (1987) 399-405. https://doi.org/10.1016/0025-5416(87)90404-6
  12. J.-W. Lee, C.-J. Wang, J.-G. Duh, NaCl-induced accelerated oxidation of 304 stainless steel and Fe-Mn-Al alloy at $900^{\circ}C$, J. Mater. Sci. 38 (2003) 3619-3628. https://doi.org/10.1023/A:1025677331351
  13. S. Enestam, D. Bankiewicz, J. Tuiremo, K. Makela, M. Hupa, Are NaCl and KCl equally corrosive on superheater materials of steam boilers? Fuel, 104 (2013) 294-306. https://doi.org/10.1016/j.fuel.2012.07.020
  14. M. Paneru, G. Stein-Brzozowska, J. Maier, and G. Scheffknecht, Corrosion mechanism of alloy 310 austenitic steel beneath NaCl deposit under varying $SO_2$ concentrations in an oxy-fuel combustion atmosphere, Energy Fuels, 27 (2013) 5699-5705. https://doi.org/10.1021/ef4005626