DOI QR코드

DOI QR Code

Anion Exchange Reaction Dynamics in Cesium Lead Halide Perovskite Quantum Dots

Cesium Lead Halide 페로브스카이트 양자점의 음이온 교환 반응 동역학

  • Lee, See Maek (Korea Institute of Ceramic Engineering and Technology, Electronic Conversion Materials Division) ;
  • Jung, Hyunsung (Korea Institute of Ceramic Engineering and Technology, Electronic Conversion Materials Division) ;
  • Park, Woonik (Korea Institute of Ceramic Engineering and Technology, Electronic Conversion Materials Division) ;
  • Lim, Hyunseob (Department of Chemistry, Chonnam National University (CNU)) ;
  • Bang, Jiwon (Korea Institute of Ceramic Engineering and Technology, Electronic Conversion Materials Division)
  • 이시맥 (한국세라믹기술원 전자융합소재본부 나노융합소재센터) ;
  • 정현성 (한국세라믹기술원 전자융합소재본부 나노융합소재센터) ;
  • 박운익 (한국세라믹기술원 전자융합소재본부 나노융합소재센터) ;
  • 임현섭 (전남대학교 화학과) ;
  • 방지원 (한국세라믹기술원 전자융합소재본부 나노융합소재센터)
  • Received : 2018.10.04
  • Accepted : 2018.10.25
  • Published : 2018.10.31

Abstract

Cesium lead halide perovskite quantum dots (QDs) have recently emerged as highly promising opto-electronic materials. Despite the relative facile anion exchange reactions in cesium lead halide perovskite QDs, in depth study of the anion exchange reactions such as reaction kinetics are required that can provide insight into the crystal transformation in the cesium lead halide perovskite QDs. Herein, we investigated the anion exchange reaction from $CsPbI_3$ QDs to $CsPbBr_3$ QDs with varying the particle size of the starting $CsPbI_3$ QDs. By characterizing the PL spectra in the anion exchange reaction process, we observed that discontinuous PL peak shifts during I-to-Br anion exchange reaction in starting $CsPbI_3$ QDs over a critical size. Origin of the discontinuous I-to-Br anion exchange kinetics are mainly due to thermodynamically unstable nature of the $CsPb(Br/I)_3$ alloy QDs.

Keywords

PMGHBJ_2018_v51n5_257_f0001.png 이미지

Fig. 1. Optical (a) absorption, and (b) photoluminescence of the CsPbI3 QDs dispersed in hexane.

PMGHBJ_2018_v51n5_257_f0002.png 이미지

Fig. 3. PL spectra during a CsPbBr3 to CsPbI3 NC conversion for two different starting CsPbI3 QD samples. (a) 678 nm emitting, and (b) 692 nm emitting CsPbI3 QD samples.

PMGHBJ_2018_v51n5_257_f0003.png 이미지

Fig. 2. (a) PL spectra during a CsPbI3 to CsPbBr3 QD conversion. (b) Powder XRD patterns of pristine CsPbI3 QDs (red) and anion exchanged CsPbBr3 QDs (green), in which the bars on the top and bottom represent the bulk structures of CsPbI3 and CsPbBr3, respectively.

PMGHBJ_2018_v51n5_257_f0004.png 이미지

Fig. 4. (a) In- situ PL spectra during a CsPbI3 to CsPbBr3 QD conversion. (b) PL spectrum at the reaction time of 80s (green) fitted by the sum of three Gaussian peaks (wine), with separate P1 (red), P2 (green), and P3 (blue) components. (c) PL peak center, (d) PL intensities, and (e) PL linewidth of the deconvoluted PL spectra in figure (a).

References

  1. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science 348 (2015) 1234-1237. https://doi.org/10.1126/science.aaa9272
  2. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050-6051. https://doi.org/10.1021/ja809598r
  3. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science 347 (2015) 519-521. https://doi.org/10.1126/science.aaa2725
  4. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Gratzel, S. Mhaisalkar, T. C. Sum, Low-temperature solution-processed wavelength-tunable perovskites for lasing, Nat. Mater. 13 (2014) 476-480. https://doi.org/10.1038/nmat3911
  5. Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, Bright light-emitting diodes based on organometal halide perovskite, Nat. Nanotechnol. 9 (2014) 687-692. https://doi.org/10.1038/nnano.2014.149
  6. H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. G. de Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, Efficient and stable solutionprocessed planar perovskite solar cells via contact passivation, Science 355 (2017) 722-726. https://doi.org/10.1126/science.aai9081
  7. Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Scholes, B. P. Rand, Effcient perovskite light-emitting diodes featuring nanometre-sized crystallites, Nat. Photonics 11 (2017) 108-115. https://doi.org/10.1038/nphoton.2016.269
  8. J. S. Manser, M. I. Saidaminov, J. A. Christians, O. M. Bakr, P. V. Kamat, Making and breaking of lead halide perovskites, Acc. Chem. Res. 49 (2016) 330-338. https://doi.org/10.1021/acs.accounts.5b00455
  9. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites ($CsPbX_3$, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett. 15 (2015) 3692-3696. https://doi.org/10.1021/nl5048779
  10. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature 517 (2015) 476-480. https://doi.org/10.1038/nature14133
  11. Q. A. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions, J. Am. Chem. Soc. 137 (2015) 10276-10281. https://doi.org/10.1021/jacs.5b05602
  12. M. Li, X. Zhang, S. Lu, P. Yang, Phase transformation, morphology controlling, and luminescence evolution of cesium lead halide nanocrystals in anion exchange process, RSC Adv. 6 (2016) 103382-103384. https://doi.org/10.1039/C6RA22070C
  13. H. Li, M. Zanella, A. Genovese, M. Povia, A. Falqui, C. Giannini, L. Manna, Sequential cation exchange in nanocrystals: preservation of crystal phase and formation of metastable phases, Nano Lett. 11 (2011) 4964-4970. https://doi.org/10.1021/nl202927a
  14. A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, Quantum dot-induced phase stabilization of ${\alpha}-CsPbI_3$ perovskite for high-efficiency photovoltaics, Science 354 (2016) 92-95. https://doi.org/10.1126/science.aag2700
  15. J. Mizusaki, K. Arai, K. Fueki, Ionic conduction of the perovskite-type halides, Solid State Ionics 11 (1983) 203-211. https://doi.org/10.1016/0167-2738(83)90025-5
  16. W.-J. Yin, Y. Yan, S.-H. Wei, J. Am, Anomalous alloy properties in mixed halide perovskites, Chem. Lett. 5 (2014) 3625-3631.
  17. S. M. Lee, C. J. Moon, H. Lim, Y. Lee, M. Y. Choi, J. Bang, Temperature-dependent photoluminescence of cesium lead halide perovskite quantum dots: splitting of the photoluminescence peaks of $CsPbBr_3$ and $CsPb(Br/I)_3$ quantum dots at low temperature, J. Phys. Chem. C 121 (2017) 26054-26062. https://doi.org/10.1021/acs.jpcc.7b06301
  18. Q. Jiang, S. Zhang, J. Li, Grain size-dependent diffusion activation energy in nanomaterials, Solid State Commun. 130 (2004) 581-584. https://doi.org/10.1016/j.ssc.2004.03.033