DOI QR코드

DOI QR Code

Identification of the out-of-control variable based on Hotelling's T2 statistic

호텔링 T2의 이상신호 원인 식별

  • Lee, Sungim (Department of Applied Statistics, Dankook University)
  • Received : 2018.10.30
  • Accepted : 2018.11.01
  • Published : 2018.12.31

Abstract

Multivariate control chart based on Hotelling's $T^2$ statistic is a powerful tool in statistical process control for identifying an out-of-control process. It is used to monitor multiple process characteristics simultaneously. Detection of the out-of-control signal with the $T^2$ chart indicates mean vector shifts. However, these multivariate signals make it difficult to interpret the cause of the out-of-control signal. In this paper, we review methods of signal interpretation based on the Mason, Young, and Tracy (MYT) decomposition of the $T^2$ statistic. We also provide an example on how to implement it using R software and demonstrate simulation studies for comparing the performance of these methods.

호텔링 $T^2$ 통계량에 근거한 다변량 관리도는 공정의 이상상태를 식별하는 통계적 공정관리의 강력한 도구 중 하나이다. 다수의 품질 특성치를 동시에 모니터링하는데 사용된다. $T^2$ 관리도를 통해 이상신호가 탐지된다는 것은 평균 벡터의 변화가 있다는 것을 의미하게 된다. 그러나, 이러한 다변량 통계량의 신호는 이상신호에 대한 원인을 식별하기 어렵게 한다. 이 논문에서는 $T^2$ 통계량을 서로 독립인 항으로 분해한 Mason, Young, Tracy (MYT) 분해에 기반한 원인 식별 방법들을 살펴본다. 또한, R 소프트웨어를 사용하여 사례분석을 하고, 모의실험을 통해 각 절차의 성능을 비교 평가해보고자 한다.

Keywords

GCGHDE_2018_v31n6_811_f0001.png 이미지

Figure 3.1. R code for a phase II control chart based on the T2 statistic.

GCGHDE_2018_v31n6_811_f0002.png 이미지

Figure 3.2. Output for the mult.chart function: the MYT decomposition of the T2 statistic for an out-of-control observation.

Table 3.1. All possible MYT decompositions for an 18th observation which falls outside the upper control limit

GCGHDE_2018_v31n6_811_t0001.png 이미지

Table 3.2. Summary of the individual T2 statistics

GCGHDE_2018_v31n6_811_t0002.png 이미지

Table 3.3. Summary of all $T^{2}_{ij}$

GCGHDE_2018_v31n6_811_t0003.png 이미지

Table 4.1. Comparison of the percentages of correct identification of the cause for out-of-control signals

GCGHDE_2018_v31n6_811_t0004.png 이미지

References

  1. Alt, F. B. (1985). Multivariate quality control, In Kotz, S., Johnson, N. L., Read, C.R. (eds.) Encyclopedia of Statistical Sciences, 6, 111-122.
  2. Doganaksoy, N., Faltin, F. W., and Tucker, W. T. (1991). Identification of out-of-control multivariate characteristic in a multivariable manufacturing environment, Communications in Statistics - Theory and Methods, 20, 2775-2790. https://doi.org/10.1080/03610929108830667
  3. Hayter, A. J. and Tsui, K. L. (1994). Identification and quantification in multivariate quality control problems, Journal of Quality Technology, 26, 197-208. https://doi.org/10.1080/00224065.1994.11979526
  4. Hotelling, H. (1947). Multivariate Quality Control, Techniques of Statistical Analysis, Eisenhart, Hastay, and Wallis (eds), McGraw-Hill, New York.
  5. Jackson, J. E. (1991). A User's Guide to Principal Components, John Wiley & Sons, New York.
  6. Kenett, R. S. and Halevy, A. (1984). Some statistical aspects of quality conformance inspection in military specifications documents, Proceedings of the 5th International Conference of the Israeli Society for Quality Assurance, Tel Aviv, 23-35.
  7. Kourti, T. and MacGregor, J. F. (1996). Multivariate SPC methods for process and product monitoring, Journal of Quality Technology, 28, 409-428. https://doi.org/10.1080/00224065.1996.11979699
  8. Lee, S. (2015). Effects of parameter estimation in phase I on phase II control limits for monitoring autocorrelated data, The Korean Journal of Applied Statistics, 28, 1025-1034. https://doi.org/10.5351/KJAS.2015.28.5.1025
  9. Lee, S. (2018). Notes on identifying source of out-of-control signals in phase II multivariate process monitoring, The Korean Journal of Applied Statistics, 31, 1-12.
  10. Lim, J. and Lee, S. (2017). Phase II monitoring of changes in mean from high-dimensional data, Applied Stochastic Models in Business and Industry, 33, 626-639. https://doi.org/10.1002/asmb.2267
  11. Mason, R. L., Tracy, N. D., and Young, J. C. (1995). Decomposition of $T^2$ for multivariate control chart interpretation, Journal of Quality Technology, 27, 99-108. https://doi.org/10.1080/00224065.1995.11979573
  12. Mason, R. L., Tracy, N. D., and Young, J. C. (1997). A practical approach for interpreting multivariate $T^2$ control chart, Journal of Quality Technology, 29, 396-406. https://doi.org/10.1080/00224065.1997.11979791
  13. Mason, R. L. and Young, J. C. (1999). Improving the sensitivity of the 62 statistic in multivariate process control, Journal of Quality Technology, 31, 155-165. https://doi.org/10.1080/00224065.1999.11979912
  14. Montgomery, D. C. (2005). Introduction to Statistical Quality Control (5th ed), John Wiley & Sons, New York.
  15. Murphy, B. J. (1987). Selecting out-of-control variables with 62 multivariate quality procedures, The Statistician, 36, 571-583. https://doi.org/10.2307/2348668
  16. Shewhart, W. A. (1926). Quality control charts, Bell System Technical Journal, 2, 593-603.
  17. Timm, N. H. (1996). Multivariate quality control using finite intersection tests, Journal of Quality Technology, 28, 233-243. https://doi.org/10.1080/00224065.1996.11979663
  18. Woodall, W. H. and Montgomery, D. C. (1999). Research issues and ideas in statistical process control, Journal of Quality Technology, 31, 376-385. https://doi.org/10.1080/00224065.1999.11979944