DOI QR코드

DOI QR Code

Molecular Characterization of Hard Ticks by Cytochrome c Oxidase Subunit 1 Sequences

  • Gou, Huitian (College of Veterinary Medicine, Gansu Agricultural University) ;
  • Xue, Huiwen (College of Veterinary Medicine, Gansu Agricultural University) ;
  • Yin, Hong (State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute of Chinese Academy of Agricultural Science) ;
  • Luo, Jianxun (State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute of Chinese Academy of Agricultural Science) ;
  • Sun, Xiaolin (College of Veterinary Medicine, Gansu Agricultural University)
  • Received : 2018.02.02
  • Accepted : 2018.04.25
  • Published : 2018.12.31

Abstract

Although widely studied, the natural diversity of the hard tick is not well known. In this study, we collected 194 sequences from 67 species, covering 7 genera of hard tick. The 5' region of the mitochondrial cytochrome c oxidase subunit 1 region (586 bp) has been used to investigate intra- and inter-species variation and the phylogenetic tree of neighbor joining method has been used for assessment. As a result, by comparing the K2P-distance of intra- and interspecies, 30 samples (15.2%) shown that interspecies distance was larger than the minimum interspecfic distance. From the phylogenetic analysis, 86.8% (49) of the species were identified correctly at the genus level. On deeper analysis on these species suggested the possibility of presence cryptic species. Therefore, further work is required to delineate species boundaries and to develop a more complete understanding of hard tick diversity over larger scale.

Keywords

References

  1. Jongejan F, Uilenberg G. The global importance of ticks. Parasitology 2004; 129 (suppl): 3-14. https://doi.org/10.1017/S0031182004005967
  2. Banumathi B, Vaseeharan B, Rajasekar P, Prabhu NM, Ramasamy P, Murugan K, Canale A, Benelli G. Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus - A review. Vet Parasitol 2017; 244: 102-110. https://doi.org/10.1016/j.vetpar.2017.07.021
  3. Chen Z. Taxonomic and Systematic Research of Chinese Ticks and Biological Characteristic Analysis of Two Hard Tick Species. Shijiazhuang, China. Hebei Normal University 2010.
  4. Estrada-Pena A, Ayllon N, de la Fuente J. Impact of climate trends on tick-borne pathogen transmission. Front Physiol 2012; 3: 64.
  5. McCoy KD, Leger E, Dietrich M. Host specialization in ticks and transmission of tick-borne diseases: a review. Front Cell Infect Microbiol 2013; 3: 57.
  6. Klompen JS, Black WC 4th, Keirans JE, Oliver JH Jr. Evolution of ticks. Annu Rev Entomol 1996; 41: 141-161. https://doi.org/10.1146/annurev.en.41.010196.001041
  7. Nava S, Guglielmone AA, Mangold AJ. An overview of systematics and evolution of ticks. Front Biosci 2009; 14: 2857-2877.
  8. Li HY, Zhao SS, Hornok S, Farkas R, Guo LP, Chen CF, Shao RF, Lv JZ, Wang YZ. Morphological and molecular divergence of Rhipicephalus turanicus tick from Albania and China. Exp Appl Acarol 2017; 73: 493-499. https://doi.org/10.1007/s10493-017-0189-8
  9. Livanova NN, Tikunov AY, Kurilshikov AM, Livanov SG, Fomenko NV, Taranenko DE, Kvashnina AE, Tikunova NV. Genetic diversity of Ixodes pavlovskyi and I. persulcatus (Acari: Ixodidae) from the sympatric zone in the south of Western Siberia and Kazakhstan. Exp Appl Acarol 2015; 67: 441-456. https://doi.org/10.1007/s10493-015-9947-7
  10. Marrelli MT, Souza LF, Marques RC, Labruna MB, Matioli SR, Tonon AP, Ribolla PE, Marinotti O, Schumaker TT. Taxonomic and phylogenetic relationships between neotropical species of ticks from genus Amblyomma (Acari: Ixodidae) inferred from second internal transcribed spacer sequences of rDNA. J Med Entomol 2007; 44: 222-228. https://doi.org/10.1603/0022-2585(2007)44[222:TAPRBN]2.0.CO;2
  11. Chitimia L, Lin RQ, Cosoroaba I, Wu XY, Song HQ, Yuan ZG, Zhu XQ. Genetic characterization of ticks from southwestern Romania by sequences of mitochondrial cox1 and nad5 genes. Exp Appl Acarol 2010; 52: 305-311. https://doi.org/10.1007/s10493-010-9365-9
  12. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994; 3: 294-299.
  13. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  14. Matzen da Silva J, Creer S, dos Santos A, Costa AC, Cunha MR, Costa FO, Carvalho GR. Systematic and Evolutionary Insights Derived from mtDNA CO1 Barcode Diversity in the Decapoda (Crustacea: Malacostraca). PLoS One 2011; 6: e19449. https://doi.org/10.1371/journal.pone.0019449
  15. Kerr KC, Stoeckle MY, Dove CJ, Weigt LA, Francis CM, Hebert PD. Comprehensive DNA barcode coverage of North American birds. Mol Ecol Notes 2007; 7: 535-543. https://doi.org/10.1111/j.1471-8286.2007.01670.x
  16. Ros VI, Breeuwer JA. Spider mite (Acari: Tetranychidae) mitochondrial CO1 phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Exp Appl Acarol 2007; 42: 239-262. https://doi.org/10.1007/s10493-007-9092-z
  17. Rees DJ, Dioli M, Kirkendall LR. Molecules and morphology: evidence for cryptic hybridization in African Hyalomma (Acari: Ixodidae). Mol Phylogenet Evol 2003; 27: 131-142. https://doi.org/10.1016/S1055-7903(02)00374-3
  18. Waugh J. DNA barcoding in animal species: progress, potential and pitfalls. Bioessays 2007; 29: 188-197. https://doi.org/10.1002/bies.20529
  19. Hebert PD, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 2003; 270 (suppl): 96-99.
  20. Sheth BP, Thaker VS. DNA barcoding and traditional taxonomy: an integrated approach for biodiversity conservation. Genome 2017; 60: 618-628. https://doi.org/10.1139/gen-2015-0167
  21. Meyer CP, Paulay G. DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 2005; 3: e422. https://doi.org/10.1371/journal.pbio.0030422
  22. Apanaskevich DA, Horak IG. The genus Hyalomma. XI. Redescription of all parasitic stages of H. (Euhyalomma) asiaticum (Acari: Ixodidae) and notes on its biology. Exp Appl Acarol 2010; 52: 207-220. https://doi.org/10.1007/s10493-010-9361-0
  23. Apanaskevich DA, Schuster AL, Horak IG. The genus Hyalomma: VII. Redescription of all parasitic stages of H.(Euhyalomma) dromedarii and H.(E.) schulzei (Acari: Ixodidae). J Med Entomol 2008; 45: 817-831. https://doi.org/10.1603/0022-2585(2008)45[817:TGHVRO]2.0.CO;2
  24. Chen Z, Yu Z, Yang X, Zheng H, Liu J. The life cycle of Hyalomma asiaticum kozlovi Olenev, 1931 (Acari: Ixodidae) under laboratory conditions. Vet Parasitol 2009; 160: 134-137. https://doi.org/10.1016/j.vetpar.2008.10.028
  25. Kaur H, Chhilar JS, Chhillar S. Mitochondrial 16S rDNA based analysis of some hard ticks belonging to genus Hyalomma Koch, 1844 (Acari: Ixodidae). J Adv Parasitol 2016; 3: 32-48. https://doi.org/10.14737/journal.jap/2016/3.2.32.48
  26. Hekimoglu O, Ozer AN. Distribution and phylogeny of Hyalomma ticks (Acari: Ixodidae) in Turkey. Exp Appl Acarol 2017; 73: 501-519. https://doi.org/10.1007/s10493-017-0192-0
  27. Bursali A, Keskin A, Tekin S. A review of the ticks (Acari: Ixodida) of Turkey: species diversity, hosts and geographical distribution. Exp Appl Acarol 2012; 57: 91-104. https://doi.org/10.1007/s10493-012-9530-4
  28. Shemshad K, Rafinejad J, Kamali K, Piazak N, Sedaghat MM, Shemshad M, Biglarian A, Nourolahi F, Valad Beigi E, Enayati AA. Species diversity and geographic distribution of hard ticks (Acari: Ixodoidea: Ixodidae) infesting domestic ruminants, in Qazvin Province, Iran. Parasitol Res 2012; 110: 373-380. https://doi.org/10.1007/s00436-011-2501-6

Cited by

  1. Detection of novel mitochondrial mutations in cytochrome C oxidase subunit 1 (COX1) in patients with familial adenomatous polyposis (FAP) vol.22, pp.6, 2018, https://doi.org/10.1007/s12094-019-02208-6
  2. Phylogenetic analysis of Crimean-Congo hemorrhagic fever virus in inner Mongolia, China vol.13, pp.1, 2018, https://doi.org/10.1016/j.ttbdis.2021.101856