DOI QR코드

DOI QR Code

Preparation of radiolabeled polycyclic aromatic hydrocarbon assemblies for biological assessment of diesel exhaust particulates

  • Lee, Chang Heon (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Shim, Ha Eun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Song, Lee (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Jeon, Jongho (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 투고 : 2018.12.13
  • 심사 : 2018.12.21
  • 발행 : 2018.12.30

초록

The potential health risk from inhalational exposure of diesel exhaust particulates (DEP) has gained considerable scientific interests. However, the long-term in vivo behavior of DEP have not been clearly understood due to the difficulty of accurate analysis of these substances in a living subject. We herein demonstrate a detail protocol for the preparation of radiolabeled DEP using a radioactive-iodine-tagged pyrene analog. The purified $^{125}I$-labeled pyrene ($[^{125}I]1$) was obtained with a good radiochemical yield ($32{\pm}4%$, n=3) and high radiochemical purity (>99%) from the stannylated precursor 2. Next, the purified $[^{125}I]1$ was successfully assembled into the DEP suspension in an efficient manner. The radiolabeled DEP was highly stable in a mouse serum for 7 days without significant deiodination or dissociation of $[^{125}I]1$. These results clearly indicate that the present radiolabeling method will be useful for biodistribution study of carbonaceous particulates in vivo.

키워드

DHBSB1_2018_v4n2_90_f0001.png 이미지

Figure 1. Synthetic procedure of [125I]1 and radiolabeled DEP (125I-DEP)

DHBSB1_2018_v4n2_90_f0002.png 이미지

Figure 2. Analytical HPLC chromatogram of the purified [125I]1. a) UV detector, and b) γ-detector.

DHBSB1_2018_v4n2_90_f0003.png 이미지

Figure 3. Stability test of 125I-DEP in mouse serum. (Stability (%) = Cp / (Cp + Cs) x 100, Cp = radioactivity in the pellet, Cs = radioactivity in the supernatant)

참고문헌

  1. Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev 2010;110:2858-2902. https://doi.org/10.1021/cr900325h
  2. Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS. $^{89}Zr$-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med 2010;51:1293-1300. https://doi.org/10.2967/jnumed.110.076174
  3. Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol 2009;36:729-739. https://doi.org/10.1016/j.nucmedbio.2009.05.007
  4. Pandya DN, Bhatt N, Yuan H, Day CS, Ehrmann BM, Wright M, Bierbach U, Wadas TJ. Zirconium tetraazamacrocycle complexes display extraordinary stability and provide a new strategy for zirconium-89-based radiopharmaceutical development. Chem Sci 2017;8:2309-2314. https://doi.org/10.1039/C6SC04128K
  5. Pandit-Taskar N, O'Donoghue JA, Beylergil V, Lyashchenko S, Ruan S, Solomon SB, Durack JC, Carrasquillo JA, Lefkowitz RA, Gonen M, Lewis JS, Holland JP, Cheal SM, Reuter VE, Osborne JR, Loda MF, Smith-Jones PM, Weber WA, Bander NH, Scher HI, Morris MJ, Larson SM. $^{89}Zr$-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur J Nucl Med Mol Imaging 2014;41:2093-2105. https://doi.org/10.1007/s00259-014-2830-7
  6. Ulaner GA, Hyman DM, Ross DS, Corben A, Chandarlapaty S, Goldfarb S, McArthur H, Erinjeri JP, Solomon SB, Kolb H, Lyashchenko SK, Lewis JS, Carrasquillo JA. Detection of HER2-Positive Metastases in Patients with HER2-Negative Primary Breast Cancer Using $^{89}Zr$-Trastuzumab PET/CT. J Nucl Med 2016;57:1523-1528. https://doi.org/10.2967/jnumed.115.172031
  7. Gaykema SB, Brouwers AH, Lub-de Hooge MN, Pleijhuis RG, Timmer-Bosscha H, Pot L, van Dam GM, van der Meulen SB, de Jong JR, Bart J, de Vries J, Jansen L, de Vries EG, Schroder CP. $^{89}Zr$-bevacizumab PET imaging in primary breast cancer. J Nucl Med 2013;54:1014-1018. https://doi.org/10.2967/jnumed.112.117218
  8. Gaykema SB, Schroder CP, Vitfell-Rasmussen J, Chua S, Oude Munnink TH, Brouwers AH, Bongaerts AH, Akimov M, Fernandez-Ibarra C, Lub-de Hooge MN, de Vries EG, Swanton C, Banerji U. $^{89}Zr$-trastuzumab and $^{89}Zr$-bevacizumab PET to evaluate the effect of the HSP90 inhibitor NVP-AUY922 in metastatic breast cancer patients. Clin Cancer Res 2014;20:3945-3954. https://doi.org/10.1158/1078-0432.CCR-14-0491
  9. Bahce I, Huisman MC, Verwer EE, Ooijevaar R, Boutkourt F, Vugts DJ, van Dongen GA, Boellaard R, Smit EF. Pilot study of $^{89}Zr$-bevacizumab positron emission tomography in patients with advanced nonsmall cell lung cancer. EJNMMI Res 2014;4:35. https://doi.org/10.1186/s13550-014-0035-5
  10. Oosting SF, Brouwers AH, van Es SC, Nagengast WB, Oude Munnink TH, Lub-de Hooge MN, Hollema H, de Jong JR, de Jong IJ, de Haas S, Scherer SJ, Sluiter WJ, Dierckx RA, Bongaerts AH, Gietema JA, de Vries EG. $^{89}Zr$-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment. J Nucl Med 2015;56:63-69. https://doi.org/10.2967/jnumed.114.144840
  11. van Asselt SJ, Oosting SF, Brouwers AH, Bongaerts AH, de Jong JR, Lub-de Hooge MN, Oude Munnink TH, Fiebrich HB, Sluiter WJ, Links TP, Walenkamp AM, de Vries EG. Everolimus reduces $^{89}Zr$-bevacizumab tumor uptake in patients with neuroendocrine tumors. J Nucl Med 2014;55:1087-1092. https://doi.org/10.2967/jnumed.113.129056