DOI QR코드

DOI QR Code

유휴 공간에 LID 기법을 활용한 생태연못의 수질 모니터링

Water Quality Monitoring of the Ecological Pond Constructed by LID Technique in Idle Space

  • 안창혁 (한국건설기술연구원 국토보전연구본부) ;
  • 송호면 (한국건설기술연구원 국토보전연구본부) ;
  • 박준하 ((주)뉴보텍 기술연구소) ;
  • 박점옥 ((주)뉴보텍 기술연구소) ;
  • 박재로 (한국건설기술연구원 국토보전연구본부)
  • Ahn, Chang-Hyuk (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Song, Ho-Myeon (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Joon-Ha (NUVOTEC Co., Ltd., Technical Research Center) ;
  • Park, Jum-Ok (NUVOTEC Co., Ltd., Technical Research Center) ;
  • Park, Jae-Roh (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2018.10.22
  • 심사 : 2018.12.07
  • 발행 : 2018.12.31

초록

본 연구에서는 도시 내 유휴공간을 대상으로 자연적이고 쾌적한 커뮤니티 공간 창출을 위해 LID(low impact development) 기법을 활용한 생태연못 건설을 추진하였다. 생태연못의 제원은 면적 $110m^2$, 평균 수심 $0.45{\pm}0.02m$이며, 하상재료는 자갈(gravel) (diameter ${\leq}60mm$), 모래(diameter ${\leq}2mm$), bentonite로 구성하였다. 조성된 생태연못의 연간 유량 특성을 파악하기 위해 강우 및 수심 모니터링을 실시한 결과, 1년간 조사된 총 강우량은 1,287 mm이며 7, 8월에 전체의 약 71.3% (918 mm)를 차지하는 계절적 불균형을 보였으나 보조수원의 공급으로 인해 연간 평균수심은 $0.45{\pm}0.02m$로 거의 일정하게 유지되었다. 기초수질의 연간 경향은 수온($5.2{\sim}28.8^{\circ}C$), DO (5.0~13.8 mg/L), EC ($113{\sim}265{\mu}S/cm$) 등의 사례를 볼 때 계절에 따른 증감을 나타내었다. 이화학적 수질 중 BOD, COD, TN, TP의 경우 10월 이후에 증가하는 경향을 보였으나 $NH_3$$PO_4{^{3-}}$는 전반적으로 낮았다. 식물플랑크톤 지표인 Chl-a와 BGA (blue green algae)는 7~8월에 급격한 상승을 보였으며 정체수역의 특성에 따라 녹조류(Selenastrum bibraianum, Pediastrum boryanum 등)와 사상형 남조류(Phormidium sp.)가 주요 종으로 출현하였다. 수중 이온($F^-$, $Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$)은 보존성 물질인 $Cl^-$와 강한 상관관계를 보였다(R=0.70~0.97, p<0.05). 결론적으로 생태연못의 수질은 계절변화 또는 강우와 같은 외부 환경에 영향을 크게 받는 것으로 나타났으며, 유량의 증감과 밀접한 관계가 있음을 보였다. 이러한 결과를 근거로 향후 유휴공간에 적용된 생태연못의 효과적인 수질관리 및 생물다양성 증진을 위해서는 본 연구에서 조사된 특성들을 참고하여 생태적으로 상호 연계성 있는 고찰이 필요할 것으로 판단된다.

The purpose of this study is to construct ecological pond using LID technique in order to create naturally comfortable community space in urban idle space. The specification of the ecological pond is $110m^2$ of surface area, $0.45{\pm}0.02m$ of average depth, and bed material is composed of gravel (diameter ${\leq}60mm$), sand (diameter ${\leq}2mm$) and bentonite. Rainfall and water depth monitoring were conducted to determine the annual characteristics of inflow of the water for the ecological pond, result of total rainfall was 1,287 mm and showed a seasonal imbalance that accounted for 71.3% (918 mm) during July to August, but the annual mean water depth was kept constant at $0.45{\pm}0.02m$ due to the secondary water source. Annual trends of basic water quality showed a significant changes according to the season, such as water temperature ($5.2{\sim}28.8^{\circ}C$), DO (5.0 ~ 13.8 mg/L), EC ($113{\sim}265{\mu}S/cm$). BOD, COD, TN, and TP in physicochemical water quality tended to increase after October, but the ion parameters such as $NH_3$ and $PO_4{^{3-}}$ were generally low. Phytoplankton indicators Chl-a and BGA (blue green algae) showed a sharp increase from July to August, and green algae (Selenastrum bibraianum, Pediastrum boryanum etc.) and filamentous blue green algae (Phormidium sp.) emerged as a dominant species. The ion parameters ($F^-$, $Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were strongly correlated with the $Cl^-$ as a conservative substance (R=0.70~0.97, p<0.05). Water quality was influenced by the ambient environment such as seasonal changes or rainfall, and it was closely related to fluctuation of the inflow of the water. In the future, it is necessary to consider ecological connections by referring to the characteristics surveyed in this study in order to effectively manage the water quality and biodiversity of the ecological pond in idle space.

키워드

HOPHBL_2018_v27n6_674_f0001.png 이미지

Figure 1. Overview of construction process for the ecological pond in this study.

HOPHBL_2018_v27n6_674_f0002.png 이미지

Figure 2. Scenery of LID-based ecological pond over time. (a) The idle space before the construction (February 2011). (b) After the construction of LID-based ecological pond (April 2012). (c) Five years after construction of LIDbased ecological pond (April 2017).

HOPHBL_2018_v27n6_674_f0003.png 이미지

Figure 3. Results of rainfall, water depth and water discharge monitoring in the study.

HOPHBL_2018_v27n6_674_f0004.png 이미지

Figure 4. Results of basic water quality parameters in this study.

HOPHBL_2018_v27n6_674_f0005.png 이미지

Figure 5. Results of physicochemical water quality parameters in this study.

HOPHBL_2018_v27n6_674_f0006.png 이미지

Figure 6. Results of various ions in water in this study.

참고문헌

  1. American Public Health Association (APHA) 2005. Standard methods for the examination of water and wastewater, 21th edition.; American Public Health Association, Washington, D.C., USA. p. 1368.
  2. Chaudhury RR, Sobrinho JAH, Wright RM, Sreenivas M. 1998. Dissolved oxygen modeling of the Blackstone River (northeastern United States). Wat Research. 32(8): 2400-2412. https://doi.org/10.1016/S0043-1354(98)00004-9
  3. Cornelis J, Hermy M. 2004. Biodiversity relationships in urban and suburban parks in Flanders. Landsc Urban Plan. 69: 385-401. https://doi.org/10.1016/j.landurbplan.2003.10.038
  4. Goertzen D, Suhling F. 2013. Promoting dragonfly diversity in cities: Major determinants and implications for urban pond design. J Insect Conserv. 17: 399-409.
  5. Interlandi SJ, Kilham SS. 2001. Limiting resources and the regulation of diversity in phytoplankton communities. Ecology. 82(5): 1270-1282. https://doi.org/10.1890/0012-9658(2001)082[1270:LRATRO]2.0.CO;2
  6. Jia H, Lu Y, Yu SL, Chen Y. 2012. Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village. Separ Purif Technol. 84: 112-119. https://doi.org/10.1016/j.seppur.2011.04.026
  7. Jin H, Shao T, Zhang R. 2017. Effect of water body forms on microclimate of residential district, Energy Procedia. 134: 256-265. https://doi.org/10.1016/j.egypro.2017.09.615
  8. Joo JC, Ahn CH. 2011. Optimization protocol of urban water circulation system. Water and Future. 44(6): 57-61. [Korean Literature]
  9. Jurczak T, Wojtal-Frankiewicz A, Kaczkowski Z, Oleksinska Z, Bednarek A, Zalewski M. 2018. Restoration of a shady urban pond e The pros and cons. J Environ Manage. 217: 919-928. https://doi.org/10.1016/j.jenvman.2018.03.114
  10. KMA: meteorological data [Internet]. 2017-2018. Korea Meteorological Administration; [cited 2018 Oct 1]. Available from: http://www.kma.go.kr/
  11. Kim B. 1999. Ecology of a cyanobacterial mat community in a Korean thermal wastewater stream. Aquat Ecol. 33: 331-338. https://doi.org/10.1023/A:1009986606414
  12. Korea Institute of Civil Engineering and Building Technology (KICT). 2012. An experimental project on natural symbiosis in river and lake. p. 87. [Korean Literature]
  13. Niemela J. 1999. Is there a need for a theory of urban ecology? Urban Ecosyst. 3: 57-65. https://doi.org/10.1023/A:1009595932440
  14. Shafique M, Kim R, Rafiq M. 2018. Green roof benefits, opportunities and challenges-A review. Renew Sustain Energy Rev. 90: 757-773. https://doi.org/10.1016/j.rser.2018.04.006
  15. Shafique M,. Kim R. 2018. Recent progress in low-impact development in South Korea: Water-management policies, challenges and opportunities. Water. 10(435): 1-18. https://doi.org/10.3390/w10020001
  16. Sharma P, Asaeda T, Fujino T. 2008. Effect of water depth on the rhizome dynamics of Typha angustifolia. Wetlands Ecol Manage. 16: 43-49. https://doi.org/10.1007/s11273-007-9055-5
  17. Suttle CA, Harrison PJ. 1988. Ammonium and phosphate uptake rates, N:P supply ratios, and evidence for N and P limitation in some oligotrophic lakes. Limnol Oceanogr. 33(2): 186-202. https://doi.org/10.4319/lo.1988.33.2.0186
  18. Vollenweider RA, Kerekes JJ. 1980. Background and summary results of the OECD cooperative program on eutrophication, In: Proceedings of an international symposium on inland waters and lake restoration. U.S. Environmental Protection Agency. EPA 440/5-81-010.