DOI QR코드

DOI QR Code

The Influence of Deposition Temperature of ALD n-type Buffer ZnO Layer on Device Characteristics of Electrodeposited Cu2O Thin Film Solar Cells

ALD ZnO 버퍼층 증착 온도가 전착 Cu2O 박막 태양전지 소자 특성에 미치는 영향

  • Cho, Jae Yu (Department of Materials Science and Engineering and Optoelectronics Convergence Center, Chonnam National University) ;
  • Tran, Man Hieu (Department of Materials Science and Engineering and Optoelectronics Convergence Center, Chonnam National University) ;
  • Heo, Jaeyeong (Department of Materials Science and Engineering and Optoelectronics Convergence Center, Chonnam National University)
  • Received : 2018.02.14
  • Accepted : 2018.03.20
  • Published : 2018.03.31

Abstract

Beside several advantages, the PV power generation as a clean energy source, is still below the supply level due to high power generation cost. Therefore, the interest in fabricating low-cost thin film solar cells is increasing continuously. $Cu_2O$, a low cost photovoltaic material, has a wide direct band gap of ~2.1 eV has along with the high theoretical energy conversion efficiency of about 20%. On the other hand, it has other benefits such as earth-abundance, low cost, non-toxic, high carrier mobility ($100cm^2/Vs$). In spite of these various advantages, the efficiency of $Cu_2O$ based solar cells is still significantly lower than the theoretical limit as reported in several literatures. One of the reasons behind the low efficiency of $Cu_2O$ solar cells can be the formation of CuO layer due to atmospheric surface oxidation of $Cu_2O$ absorber layer. In this work, atomic layer deposition method was used to remove the CuO layer that formed on $Cu_2O$ surface. First, $Cu_2O$ absorber layer was deposited by electrodeposition. On top of it buffer (ZnO) and TCO (AZO) layers were deposited by atomic layer deposition and rf-magnetron sputtering respectively. We fabricated the cells with a change in the deposition temperature of buffer layer ranging between $80^{\circ}C$ to $140^{\circ}C$. Finally, we compared the performance of fabricated solar cells, and studied the influence of buffer layer deposition temperature on $Cu_2O$ based solar cells by J-V and XPS measurements.

Keywords

References

  1. M. Hosenuzzaman, N. A. Rahim, J. Selvaraj, M. Hasanuzzaman, A. B. M. A. Malek, A. Nahar, "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation", Renew. Sustain. Energy Rev., Vol. 41, pp. 284-297, 2015. https://doi.org/10.1016/j.rser.2014.08.046
  2. R. Banos, F. Manzano-Agugliaro, F. G. Montoya, C. Gil, A. Alcayde, J. Gomez, "Optimization methods applied to renewable and sustainable energy: a review", Renew. Sustain. Energy Rev., Vol. 15, No. 4, pp. 1753-1766, 2011. https://doi.org/10.1016/j.rser.2010.12.008
  3. Q. Guo, S. J. Kim, M. Kar, W. N. Sharfarman, R. W. Birkmire, E. A. Stach, R. Agrawal, H. W. Hillhouse, "Development of $CulnSe_2$ nanocrystal and nanoring inks for low-cost solar cells", Nano Lett., Vol. 8, No. 9, pp. 2982-2987, 2008. https://doi.org/10.1021/nl802042g
  4. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi, "Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency", Adv. Energy Mater., Vol. 4, No. 7, p. 1301465, 2014. https://doi.org/10.1002/aenm.201301465
  5. B. G. Mendis, M. C. J. Goodman, J. D. Major, A. A. Taylor, K. Durose, D. P. Halliday, "The role of secondary phase precipitation on grain boundary electrical activity in $Cu_2ZnSnS_4$ (CZTS) photovoltaic absorber layer material", J. Appl. Phys., Vol. 112, No. 12, p. 124508, 2012. https://doi.org/10.1063/1.4769738
  6. T. Minami, Y. Nishi, T. Miyata, J. I. Nomoto, "High-efficiency oxide solar cells with ZnO/$Cu_2O$ heterojunction fabricated on thermally oxidized $Cu_2O$ sheets", Appl. Phys. Express, Vol. 4, No. 6, p. 62301, 2011. https://doi.org/10.1143/APEX.4.062301
  7. A. Mittiga, E. Salza, F. Sarto, M. Tucci, R. Vasanthi, "Heterojunction solar cell with 2% efficiency based on a $Cu_2O$ substrate", Appl. Phys. Lett., Vol. 88, p. 163502, 2006. https://doi.org/10.1063/1.2194315
  8. Y. S. Lee, J. Heo, S. C. Siah, J. P. Mailoa, R. E. Brandt, S. B. Kim, R. G. Gordon, T. Buonassisi, "Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells", Energy Environ. Sci., Vol. 6, No. 7, pp. 2112-2118, 2013. https://doi.org/10.1039/c3ee24461j
  9. Y. Nishi, T. Miyata, T. Minami, "The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-$Cu_2O$ solar cells", Thin Solid Films, Vol. 528, pp. 72-76, 2013.
  10. T. K. S. Wong, S. Zhuk, S. Masudy-Panah, G. K. Dalapati, "Current status and future prospects of copper oxide heterojunction solar cells", Materials (Basel)., Vol. 9, No. 4, p. 271, 2016. https://doi.org/10.3390/ma9040271
  11. Y. Ievskaya, R. L. Z. Hoye, A. Sadhanala, K. P. Musselman, J. L. MacManus-Driscoll, "Fabrication of ZnO/$Cu_2O$ heterojunctions in atmospheric conditions: Improved interface quality and solar cell performance", Sol. Energy Mater. Sol. Cells, Vol. 135, pp. 43-48, 2015. https://doi.org/10.1016/j.solmat.2014.09.018
  12. M. Tadatsugu, N. Yuki, M. Toshihiro, "Efficiency enhancement using a $Zn_{1-x}Ge_x-O$ thin film as an n-type window layer in $Cu_2O$-based heterojunction solar cells", Appl. Phys. Express, Vol. 9, No. 5, p. 52301, 2016. https://doi.org/10.7567/APEX.9.052301
  13. T. Minami, Y. Nishi, T. Miyata, "Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped $Cu_2O$ sheet", Appl. Phys. Express, Vol. 8, No. 2, p. 22301, 2015. https://doi.org/10.7567/APEX.8.022301
  14. M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M. M. Mosaad, A. Waag, A. Bakin, "Fabrication and characterization of low cost $Cu_2O$/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials", Sol. Energy Mater. Sol. Cells, Vol. 145, pp. 454-461, 2016. https://doi.org/10.1016/j.solmat.2015.11.015
  15. K. Mizuno, M. Izaki, K. Murase, T. Shinagawa, M. Chigane, M. Inaba, A. Tasaka, Y. Awakura, "Structural and electrical characterizations of electrodeposited p-Type semiconductor $Cu_2O$ films", J. Electrochem. Soc., Vol. 152, No. 4, pp. C179-C182, 2005. https://doi.org/10.1149/1.1862478
  16. Y. S. Lee, D. Chua, R. E. Brandt, S. C. Siah, J. V. Li, J. P. Mailoa, S. W. Lee, R. G. Gordon, T. Buonassisi, "Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells", Adv. Mater., Vol. 26, No. 27, pp. 4704-4710, 2014. https://doi.org/10.1002/adma.201401054
  17. S. W. Lee, Y. S. Lee, J. Heo, S. C. Siah, D. Chua, R. E. Brandt, S. B. Kim, J. P. Mailoa, T. Buonassisi, R. G. Gordon, "Improved $Cu_2O$-based solar cells using atomic layer deposition to control the Cu oxidation state at the p-n junction", Adv. Energy Mater., Vol. 4, p. 1301916, 2014. https://doi.org/10.1002/aenm.201301916
  18. Y. Ievskaya, R. L. Z. Hoye, A. Sadhanala, K. P. Musselman, J. L. MacManus-Driscoll, "Improved heterojunction quality in $Cu_2O$-based solar cells through the optimization of atmospheric pressure spatial atomic layer deposited $Zn_{1-x}Mg_xO$", J. Vis. Exp., Vol. 113, p. e53501, 2016.
  19. S. Bijani, L. Martinez, M. Gabas, E. A. Dalchiele, J.-R. Ramos-Barrado, "Low-temperature electrodeposition of $Cu_2O$ thin films : modulation of micro-nanostructure by modifying the applied potential and electrolytic bath pH", J. Phys. Chem. C, Vol. 113, pp. 19482-19487, 2009. https://doi.org/10.1021/jp905952a
  20. T. K. Galeev, N. N. Bulgakov, G. A. Savelieva, N. M. Popova, "Surface-properties of platinum and palladium", React. Kinet. Catal. Lett., Vol. 14, No. 1, pp. 61-65, 1980. https://doi.org/10.1007/BF02061265
  21. R. Munter, "Advanced oxidation processes - current status and prospect", Proc. Est. Acad. Sci. Chem., Vol. 50, No. 2, pp. 59-80, 2001.