DOI QR코드

DOI QR Code

Characterization of Nickel Oxide Nanofibers Obtained by Electrospinning

  • Park, Juyun (Department of Chemistry, Pukyong National University) ;
  • Kang, Yong-Cheol (Department of Chemistry, Pukyong National University) ;
  • Koh, Sung Wi (Department of Mechanical System Engineering, Pukyong National University)
  • 투고 : 2018.01.16
  • 심사 : 2018.03.03
  • 발행 : 2018.03.30

초록

Nickel oxide nanofibers were synthesized by electrospinning with nickel(II) acetate tetrahydrate and polyvinylpyrrolidone and calcination process. The nanofiber shape was easily detected from the nanofibers with high Ni contents after calcined at $600^{\circ}C$ and the crystal structure of layer-by-layer growth was observed from SEM images at $900^{\circ}C$. XRD and TEM results showed metallic Ni and NiO structure were formed at nanofibers obtained at 600 and $900^{\circ}C$ and the crystallite size was calculated from 25 to 55 nm. The surface of nanofibers was fully oxidized from the deconvoluted Cu 2p and O 1s XPS spectra.

키워드

참고문헌

  1. R. Ganeshkumar, C. W. Cheah, R. Xu, S.-G. Kim, and R. Zhao, "A high output voltage flexible piezoelectric nanogenerator using porous lead-free $KNbO_3$ nanofibers", Appl. Phys. Lett., Vol. 111, p. 013905, 2017. https://doi.org/10.1063/1.4992786
  2. H. Zhu, A. Liu, G. Liu, and F. Shan, "Electrospun p-type CuO nanofibers for low-voltage field-effect transistors", Appl. Phys. Lett., Vol. 111, p. 143501, 2017. https://doi.org/10.1063/1.4998787
  3. C.-C. Yu, B.-C. Ho, R.-S. Juang, Y.-S. Hsiao, R. V. R. Naidu, C.-W. Kuo, Y.-W. You, J.-J. Shyue, J.-T. Fang, and P. Chen, "Poly(3,4-ethylenedioxythiophene)-based nanofiber mats as an organic bioelectronic platform for programming multiple capture/release cycles of circulating tumor cells", ACS Appl. Mater. Interfaces, Vol. 9, pp. 30329-30342, 2017. https://doi.org/10.1021/acsami.7b07042
  4. R. Shi, H. Geng, M. Gong, J. Ye, C. Wu, X. Hu, and L. Zhang, "Long-acting and broad-spectrum antimicrobial electrospun poly (${\varepsilon}$-caprolactone)/gelatin micro/nanofibers for wound dressing", J. Colloid Interface Sci., Vol. 509, pp. 275-284, 2018. https://doi.org/10.1016/j.jcis.2017.08.092
  5. S. Tort, F. Acarturk, and A. Besikci, "Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing", Int. J. Pharm., Vol. 529, pp. 642-653, 2017. https://doi.org/10.1016/j.ijpharm.2017.07.027
  6. E. Emul, S. Saglam, H. Ates, F. Korkusuz, and N. Saglam, "Characterization of electrospun nanofibrous scaffolds for nanobiomedical applications", Journal of Electronic Materials, Vol. 45, pp. 3835-3841, 2016. https://doi.org/10.1007/s11664-016-4549-7
  7. B. Dhandayuthapani, Y. Yasuhiko, T. Maekawa, and D. S. Kumar, "Fabrication and characterization of nanofibrous scaffold developed by electrospinning", Materials Research, Vol. 14, pp. 317-325, 2011. https://doi.org/10.1590/S1516-14392011005000064
  8. N. A. M. Barakat, A. E.-M. Omran, S. Aryal, F. A. Sheikh, H. K. Kang, and H. Y. Kim, "Production of beads like hollow nickel oxide nanoparticles using colloidal -gel electrospinning methodology", J. Mater. Sci., Vol. 43, pp. 860-864, 2008. https://doi.org/10.1007/s10853-007-2190-9
  9. Q. Wang, Q. Yao, J. Chang, and L. Chen, "Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains", J. Mater. Chem., Vol. 22, pp. 17612-17618, 2012. https://doi.org/10.1039/c2jm32750c
  10. N. A. Barakat, M. A. Abdelkareem, M. El-Newehy, and H. Y. Kim, "Influence of the nanofibrous morphology on the catalytic activity of NiO nanostructures: an effective impact toward methanol electrooxidation", Nanoscale Res. Lett., Vol. 8, pp. 402-402, 2013. https://doi.org/10.1186/1556-276X-8-402
  11. S. Hosogai and H. Tsutsumi, "Electrospun nickel oxide/polymer fibrous electrodes for electrochemical capacitors and effect of heat treatment process on their performance", J. Power Sources, Vol. 194, pp. 1213-1217, 2009. https://doi.org/10.1016/j.jpowsour.2009.06.044
  12. Y. Yu, Y. Xia, W. Zeng, and R. Liu, "Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance", Mater. Lett., Vol. 206, pp. 80-83, 2017. https://doi.org/10.1016/j.matlet.2017.06.119
  13. K. S. Usha, R. Sivakumar, C. Sanjeeviraja, V. Sathe, V. Ganesan, and T. Y. Wang, "Improved electrochromic performance of a radio frequency magnetron sputtered NiO thin film with high optical switching speed", RSC Adv., Vol. 6, pp. 79668-79680, 2016. https://doi.org/10.1039/C5RA27099E
  14. J. Wang, Y. Zhang, P. Wan, T. Li, D. Hou, S. Hussain, and H. Shao, "Nanosheet-assembled hollow NiO ball-flower for high-performance supercapacitor", Journal of Materials Science: Materials in Electronics, Vol. 27, pp. 8020-8026, 2016. https://doi.org/10.1007/s10854-016-4798-5
  15. P. Pandurangan, T. N. Parvin, B. Soundiraraju, Y. Johnbosco, M. Ramalingam, M. Bhagavathiachari, S. A. Suthanthiraraj, and S. S. Narayanan, "Ultrasmall NiO nanoclusters modified with conical Ni(ii)-SR staples for high performance supercapacitor applications", New J. Chem., Vol. 41, pp. 6127-6136, 2017. https://doi.org/10.1039/C6NJ03678C
  16. S. V. De Los, A. Ionescu, S. Holmes, C. H. W. Barnes, A. B. Dominguez, O. A. Quispe, J. C. Gonzalez, S. Milana, M. Barbone, A. C. Ferrari, H. Ramos, and Y. Majima, "Characterization of Ni thin films following thermal oxidation in air", J. Vac. Sci. B Nanotechnol. Microelectron., Vol. 32, p. 051808, 2014.
  17. D. S. Dalavi, R. S. Devan, R. S. Patil, Y.-R. Ma, M.-G. Kang, J.-H. Kim, and P. S. Patil, "Electrochromic properties of dandelion flower like nickel oxide thin films", J. Mater. Chem. A Mater., Vol. 1, pp. 1035-1039, 2013.
  18. Z. Song, X. Bao, U. Wild, M. Muhler, and G. Ertl, "Oxidation of amorphous Ni-Zr alloys studied by XPS, UPS, ISS and XRD", Appl. Surf. Sci., Vol. 134, pp. 31-38, 1998. https://doi.org/10.1016/S0169-4332(98)00249-9