
Journal of Multimedia Information System VOL. 5, NO. 1, March 2018 (pp. 59-62): ISSN 2383-7632(Online)

http://dx.doi.org/10.9717/JMIS.2018.5.1.59

59

Abstract: The delay between input action and visual interface

feedback (“Latency”) in a touchscreen inking task reduces the

user's performance. When the latency is less than 2.38ms, the

user cannot perceive the latency in dragging task. This value is

difficult to achieve on recent touchscreens and general purpose

computers. So, methods of predicting touch points to reduce

perceptible latency has been proposed. In general, touch points

prediction is not perfect. When using point prediction, feedback

of the predicted points is displayed on the screen, after a while,

erased when the actual points are displayed. When this task is

implemented by software, it causes additional latency to work to

erase predicted points feedback. It therefore propose a platform

for rendering point prediction feedback without additional

latency by the FPGA. This platform transmits input points and

HDMI signals rendering feedback of input points to the FPGA.

The FPGA draws the feedback of points predicted based on the

input points on the HDMI and displays the screen. Since

hardware rendering changes the HDMI signal every frame, it

does not require erasing work and rendering can be done within

an early time regardless of the amount of rendering, so we will

reduce the latency.

 Key Words: Touch screen, Latency, Prediction, FPGA.

I. INTRODUCTION

 Touchscreens are a type of interactive system.

Touchscreens have direct touch devices and indirect touch

devices. Many direct-touch devices such as smart phones,

tablets, PCs, etc. are already familiar Human Input

Devices (HID) [8], since the user feels the more intuitively

direct-touch device than the indirect-touch device [2]. All

interactive systems have a delay between input action and

feedback, which is called "latency" [5]. delay time is an

important issue of interactive systems and must be solved

[1]. In the case of a dragging action which is one of the

touch actions, the user responds most sensitively to the

latency. When the user dragging with the direct-touch

device, it is difficult to perceive the latency when the

latency is 11ms or less. When the latency is 2.38ms or less,

the latency is not perceive [3]. However, the recent direct-

touchscreen device has a latency of 50ms to 200ms, so the

latency appears visibly [4]. Latency in a direct-touch

device has many sources, usually with three main

components: 1) the physical sensor that captures touch

points; 2) the software that processes touch events and

render feedback; 3) the display itself [5]. Software

feedback requires the most latency among the three

components. Many methods have been studied for

predicting touch points as a method for reducing the

latency of software feedback [6].

We propose to change touch point prediction feedback

rendering using conventional software rendering to

hardware rendering using FPGA. In general, touch

points prediction is not perfect. When using point

prediction, feedback of the predicted points is displayed

on the screen, after a while, erased when the actual

points are displayed. When this task is implemented by

software, it causes additional latency to work to erase

predicted points feedback. When the FPGA modifies

the HDMI signal directly, the rendering time is reduced

and the predicted rendering is removed automatically

when the next frame is displayed [7]. Because the OS

uses the frame buffer on the memory to display the

screen. However, the FPGA does not use memory to

directly modify HDMI. Therefore, unless we modify

the HDMI signal with the FPGA when outputting the

next frame and displaying it on the OS, the previously

Brief Paper:

FPGA-based Hardware Prediction Rendering for Low-Latency

Touch Platform

Seok Bin Song1,Jin Heon Kim2*

Manuscript received March 10, 2018; Accepted March 19, 2018. (ID No. JMIS-2018-0019)

Corresponding Author (*): Jin Heon Kim, Address : (02713) Seogyeong-ro 124, Seongbuk-gu, Seoul, Republic of Korea,

TEL : +82-2-940-7747, jinheon@skuniv.ac.kr.
1Dept. of Computer Engineering, Seo-Kyeong University, Seoul, Republic of Korea, sukbin313@skuniv.ac.kr
2Dept. of Electronic Computer Engineering, Seo-Kyeong University, Seoul, Republic of Korea, jinheon@skuniv.ac.kr

ICT Convergence and Education

60

rendered data disappears. Hence, this method works

because hardware rendering does not cause additional

latency when displaying feedback of predicted touch

points.

II. RELATED WORK

There are many studies to numerically express the

effect of touch latency. In these studies, it is possible to

know the side-effects of touch latency on users and

delay time with effective performance [3,5,10,12]. For

each touch action such as tapping and dragging, the

latency that the user perceives as reliable is different.

Among them, in the case of dragging that responds

most sensitively to the user, if it is 11ms or less, it

shows high reliability and does not perceive latency

when it is 2.38ms or less [5].

Touch coordinate prediction techniques are described

in many papers and patents [9,10,11,22]. For example,

Taylor series, Kalman filter, Curve fitting, Heuristic,

linear short-term, and Quadratic are examples of typical

points prediction algorithms [11,13,14]. All prediction

algorithms have less accuracy as the prediction distance

increases. Hence, the setting of the predicted distance

should be carefully considered [14].

Hardware rendering transmits rendering information

such as touch coordinate information, color, size, and

HDMI signals to the board equipped with the FPGA is

mounted. The transmitted touch point and rendering

data directly modifies the HDMI signal through the

pipeline structure [15] and outputs it to the display

device. The method of modifying the HDMI signal

calculates the pixel range of the coordinates to be

changed by using the information of the input touch

point and size. Then, when it is within the changed

pixel range as compared with the currently updated

pixel position, the color of the pixel is changed to the

color of the touch pen with the color of the original

image. This method has a latency of less than 1ms with

parallel processing using hardware. It is more effective

for embedded systems with less delay time than

software feedback rendering and without a graphics

processing unit (GPU) [7].

III. SYSTEM CONFIGURATION

Fig. 1. System configuration diagram.

Figure 1 shows the process of displaying the user's

touch input to the display. The conventional touch

interactive system is as follows. 1) It senses the touch

on the touchscreen, coordinates the touch points, and

sends it to the computer. 2) The computer renders

feedback of received points.

We added hardware predictive rendering to the

existing software touch rendering system. In order to

perform hardware prediction rendering, first, HDMI

signals and rendering information such as touch point,

color, size, etc. are transmitted to the board equipped

with the FPGA. The feedback of the points predicted

based on the received points directly modifies the

HDMI signal.
The hardware of the platform is composed of AFO

65inch large touchscreen [19], Raspberry Pi 3 Model B

Computer by Raspberry Pi Foundation [18], Digilent's

Nexys Video Board [17] with Xilinx's Artix-7 xc7A200T-

1SBG484C FPGA [16], and Samsung's 65inch LED

Display [21].

IV. EXPERIMENT

We execute the touch rendering-software in an

environment where Raspbian OS is installed in Rasspberry

Pi 3 Model B. This software is a touch rendering software

that uses the Qt graphics framework [20] and requires a

2ms latency when rendering a 10 x 10 pixel point. It is a

very simple program to render touch point feedback and

send points, rendering time is short. Commercial programs

support a lot of work including inking work, so the

rendering latency is much longer. The touchscreen

requires a total 5ms latency in touch points coordinates

and transmission [19]. So the total rendering time is 7ms.

When prediction algorithms are implemented in software,

an additional latency of 4ms occurs for each prediction

point. In order to visually confirm the touch latency, we

shot at 240 frames per second (FPS) using iPhone X's

slow motion movie shooting function [23]. Touch points

prediction uses a linear short-term algorithm that is simple

to implement and has effective performance [14].

Fig. 2. Software rendering.

Figure 2 shows only software rendering without

hardware prediction rendering. We can perceive the

Journal of Multimedia Information System VOL. 5, NO. 1, March 2018 (pp. 59-62): ISSN 2383-7632(Online)

http://dx.doi.org/10.9717/JMIS.2018.5.1.59

61

difference between actual touch point and rendered

feedback.

Fig. 3. Software rendering and hardware prediction rendering.

Figure 3 shows a combination of software rendering

and hardware prediction rendering. The predicted points

are five. When rendering this work in software, additional

memory is required and the latency is increased by 20ms.

However, regardless of the number of points, hardware

rendering has latency of 0.74ms and does not require

additional memory [7]. In Figure 2, the distance between

the feedback and the actual touch point is noticeable.

However, in Figure 3, it appears that there is almost no

distance between the actual touch point and the feedback.

This is because the touch points were predicted and

rendered.

Fig. 4. Touch point predict algorithm.

Figure. 4 is a diagram representing a method of

predicting touch point. In the two-dimensional plane, let

the previous touch point be t-1 and the current touch point

be t. It is possible to know the amount of change in the X

point and the amount of change in the Y point via the

previous touch point and the current touch point. This

change amount can be applied to the current point to

calculate the predicted point t + 1. Through this

experiment, we can see that predictive rendering of

touchpoints is visually effective.

Table. 1. Latency differences between hardware prediction line

rendering and software prediction line rendering.

Table 1 shows the total latency difference between

software prediction line rendering and hardware prediction

line rendering due to touchscreen latency. The latency of

each experiment is including latency of software touch

line rendering. The vertical axis is the sum of rendering

times excluding the touchscreen latency. This experiment

generates virtual touch events that drag 1200 pixels per

second. After 200 experiments, we measured the average

of the latency required each time a touch event was

generated. Hardware prediction line rendering is not yet

implemented. However, since hardware rendering always

requires the same latency regardless of the amount of

rendering, we can assume that the hardware predicted line

rendering latency is 1ms. In Table 1, we can see that the

longer latency of the touchscreen, the greater the latency

difference between hardware predictive rendering and

software predicted rendering when performing predictive

rendering. As the latency of the touchscreen increases, the

distance between points also increases, so the prediction

distance also increases. As the prediction distance

increases, the amount of rendering increases, so hardware

prediction is less latency than software prediction.

V. CONCLUSION

Comparing Figure 2 and Figure 3, we can see that the

difference between the two pictures is clear and prediction

rendering is effective. Table 1 shows that hardware

prediction rendering requires less latency than software

prediction rendering. Hence, Hardware predictive rendering

using FPGA is effective in reducing latency. Hardware

rendering always requires the same latency regardless of

graphics processing speed. Hence, It is better to apply it to

an embedded system with low graphics processing speed.

We plan to study more precise touch points prediction

algorithm, multi-touch prediction, hardware

1
.3

8

2
.5

7

5
.6

5

2
0
.2

5

1
.5

9

3
.6

3 8
.0

3

2
5
.0

4

5MS 10MS 20MS 40MS

R
E
N

D
E
R
IN

G

R
A
LE

N
C
Y

TOUCHSCREEN LATENCY

Hardware Rendering Software Rendering

ICT Convergence and Education

62

implementation of prediction algorithm, and hardware line

rendering.

Acknowledgement

This work was supported by the Technology Innovation

Program (10062411, Developed large-size touch

interactive with the fastest response speed in the world)

funded By the Ministry of Trade, Industry & Energy

(MOTIE, Korea)

REFERENCES

[1] Meehan, M., Razzaque, S., Whitton, M. C., and Brooks,

F. P., “ Effect of Latency on Presence in Stressful

Virtual Environments,” IEEE VR, pp. 138-141, March

2003.

[2] K. Kin, M. Agrawala, and T. DeRose, “Determining

the Benefits of Directr-touch, bimanual, and

Multifinger Input on a Multitouch Workstation.” in

Proceeding of Graphics Interface, pp. 119-127, May.

2009.

[3] R. Jota, A. Ng, P. Dietz, and D. Wig- dor, “How

fast is fast enough?: User Perception of Latency

& Latency Improvements in direct and Indirect

Touch,” in Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing System,

pp 1827–1836, April. 2015.

[4] Ng, A., Lepinski, J., Wigdor, D., Sanders, S., & Dietz,

P., “Designing for low-latency direct-touch input.” in

Proceedings of the 25th annual ACM symposium on

User interface software and technology, pp. 453-464,

October. 2012.

[5] Jota, R., Ng, A., Dietz, P., & Wigdor, D., “How fast is

fast enough? : a study of the effects of latency in

direct-touch pointing tasks”, in Proceedings of the

SIGCHI Conference on Human Factors in Com-

puting Systems, pp. 2291-2300, April. 2013.

[6] Takeshi Asano, Ehud Sharlin, Yoshifumi Kitamura,

Kazuki Takashima, and Fumio Kishino. “Predictive

interaction using the delphian desktop,” in

Proceedings of the 18th Annual ACM Symposium on

User Interface Soft- ware and Technology, pp. 133–

141, October. 2005.

[7] Jun Han Yoon and Jin Heon Kim, “An Implementation

of High Speed Rendering to Process Touch Screen

Multiple Inputs Based on FPGA,” in procedding of the

Journal of Korea Multimedia Society 20(11), pp.

1803-1810, November 2017.

[8] J. S Park, J. M. Lim, and K. W. Kyeong, “Tangible

Touch Interface Technology Trend,” Korean

Information Processing Society Review, Vol. 20, No 1,

pp. 45-53, 2013

[9] Kim, B., and Lim, Y. “Mobile terminal and touch

coordinate predicting method thereof,” WO Patent App,

Aug. 2014.

[10] LINCOLN, J. “Position lag reduction for computer

drawing,” US Patent App, Oct. 2013

[11] Mathieu Nancel, Daniel Vogel, Bruno De Araujo,

Ricardo Jota, and Géry Casiez, “Next-Point Prediction

Metrics for Perceived Spatial Errors,” in

Proceedings of the 29th Annual Symposium on User

Interface Software and Technology, 2016.

[12] Kaaresoja, Topi Johannes, “Latency guidelines for

touchscreen virtual button feedback,” School of

Computing Science College of Science and

Engineering, University of Glasgow, PhD thesis,

March 2015

[13] Joseph J. LaViola., “Double Exponential Smoothing:

An Alternative to Kalman Filter-based Predictive

Tracking,” In Proceedings of the Workshop on Virtual

Environments 2003 (EGVE’03), pp. 199–206. 2003

[14] David Asselborn, and Jan Borchers, “A Predictive

Approach to Compensate Latency of Tangibles on

Capacitive Multi-Touch-Displays,” Media Computing

Group, Computer Science Department PWTH Aachen

University, July 2016

[15] J.W. Park, J.Y. Ko, J.H. Park, M.H. Hong, Y.H. Lee

and J.C. Shim, “A Wireless Temperature Control

System based on FPGA,” Journal of Korea

Multimedia Society, Vol. 15, No. 7, pp. 920-930, 2012

[16] Xilinx, http://www.xilinx.com/products/silicon-

devices/fpga/artix-7.html#documentation, (accessed

Jul. 8. 2018).

[17] Digilent, https://store.digilentinc.com/nexys-video-

artix-7-fpga-trainer-board-for-multimedia-

applications/ (accessed March. 8. 2018)

[18] Raspberry Pi Foundation,

https://www.raspberrypi.org/products/ (accessed

March. 8. 2018)

[19] AFO, http://afoi.co.kr/business/module.php,

(accessed March. 8. 2018)

[20] Qt, http://wiki.qt.io/Main (accessed March. 8. 2018)

[21]Samsung,

https://www.samsung.com/us/business/products/displa

ys/standalone/ed-series/ed-e-series-65-lh65edeplgc-

go/?CID=AFL-hq-mul-0813-11000758 (accessed

March. 8. 2018)

[22] Peter Tsoi and Jacob Xiao. “Advanced touch input on

iOS,” Technical report, Apple Inc., 2015.

[23] IPhone X, https://www.apple.com/kr/iphone-x/specs/

(accessed March. 8. 2018)

https://www.google.com/patents/WO2014129753A1?cl=en
https://www.google.com/patents/WO2014129753A1?cl=en
https://www.google.com/patents/US20130271487
https://www.google.com/patents/US20130271487

