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ON RADIAL OSCILLATION OF ENTIRE SOLUTIONS

TO NONHOMOGENEOUS ALGEBRAIC DIFFERENTIAL

EQUATIONS

Guowei Zhang

Abstract. In this paper we mainly investigate the properties of the so-
lutions to a type of nonhomogeneous algebraic differential equation in

an angular domain. It includes the Borel directions of the solutions, the

width of angular domains in which the solutions take its order and the
measure of radial distributions of Julia sets of the solutions.

1. Introduction

In this paper, we assume the reader is familiar with standard notations and
basic results of Nevanlinna’s value distribution theory; see [6,7,11,20,22]. Some
basic knowledge of complex dynamics of meromorphic functions is also needed;
see [4, 25]. Let f be a meromorphic function in the whole complex plane. We
use σ(f) and µ(f) to denote the order and lower order of f respectively; see
[20, p. 10] for the definitions.

Let Λ = {(λ0, λ1, λ2, . . . , λn)}, λj is a nonnegative integer and 0 ≤ j ≤ n <
∞, be an index set with a finite cardinal number and let

Qd(z, f) =
∑
λ∈Λ

aλf
λ0(f ′)λ1 · · · (f (n))λn

be a polynomial of f and its derivatives with degree d and meromorphic function
coefficients aλ(z), where d := deg(Qd(z, f)) = maxλ∈Λ

∑n
j=0 λj . In the sequel,

we simply call Qd(z, f) a differential polynomial of f with degree d.
Suppose that 0 ≤ α < β ≤ 2π, we set

Ω(α, β) = {z ∈ C : arg z ∈ (α, β)}, Ω(α, β, r) = {z : z ∈ Ω(α, β), |z| < r}
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and denote by Ω(α, β) the closure of Ω(α, β). Let g(z) be analytic on the angle
Ω(α, β). We define the order of g on Ω(α, β) by

σα,β(g) = lim sup
r→∞

log+ log+M(r,Ω(α, β), g)

log r
,

where M(r,Ω(α, β), g) = supα≤θ≤β |g(reiθ)|. If g(z) is analytic on C, the order
σ(g) of g satisfies σ(g) ≥ σα,β(g). Moreover, the sectorial order σθ,ε(g) and the
radial order σθ(g) are defined by

σθ,ε(g) = lim sup
r→∞

log+ log+M(r,Ω(θ − ε, θ + ε), g)

log r
, σθ(g) = lim

ε→0
σθ,ε(g).

Similarly, the sectorial, respectively radial, exponent of convergence for zeros
of g(z) are defined by

λθ,ε(g) = lim sup
r→∞

log+ log+ n(r,Ω(θ − ε, θ + ε), g = 0)

log r
, λθ(g) = lim

ε→0
λθ,ε(g),

where n(r,Ω(θ − ε, θ + ε), g = 0) stands for the number of zeros of g(z) in
Ω(θ − ε, θ + ε, r) counting multiplicity.

In 1919, Julia gave the concept of Julia direction which is an improvement of
Picard’s theorem, and started the study of singular directions for meromorphic
functions. He showed that every transcendental entire function has at least one
Julia direction. From Borel’s theorem, which is another important theorem in
the Nevanlinna theory, Valiron raised the notation of Borel direction as follows.

Definition 1.1. Let f(z) be a transcendental meromorphic function of order σ.
The ray arg z = θ is called a Borel direction of f if for any ε > 0, λθ,ε(f−a) = σ
with at most two exceptional value a ∈ C ∪ {∞}.

In 2005, Wu [19] firstly studied the Borel directions of solutions of second
order linear differential equation

f ′′(z) +A(z)f(z) = 0,(1)

where A(z) is a nonconstant polynomial or an transcendental entire function
of finite order. For the case A(z) is transcendental entire, set E = f1f2 where
f1, f2 are two linearly independent solutions of (1) and suppose that the expo-
nent of the zero-sequence λ(E) is infinite, he obtained that the ray arg z = θ
from the origin is a Borel direction for E if only if λθ =∞.

In 2015, Huang and Wang [10] considered the Borel directions of the solu-
tions for nonhomogeneous second order linear differential equations

f ′′(z) +B(z)f ′(z) +A(z)f(z) = F (z),(2)

where A(z), B(z) and F (z) are entire functions. Indeed, they obtained the
following two theorems.

Theorem A ([10]). Let A(z), B(z) be entire functions with finite order, let
F (z) be transcendental entire and max{σ(A), σ(B)} < σ(F ) =∞. If arg z = θ
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is a Borel direction of F , then it is also a Borel direction of every non-trivial
solution f of equation (2).

Theorem B ([10]). Let A(z), B(z) be entire functions with finite order, let
F (z) be transcendental entire and max{σ(A), σ(B)} < σ(F ) = σ <∞. Suppose
that f is a solution of equation (2). If arg z = θ is a Borel direction of F , then
for any angular domain Ω(α, β) contained the ray arg z = θ with β − α > π

σ ,
there exists a Borel direction of f in Ω(α, β).

These two theorems gave the relations between Borel directions of F (z) and
that of solutions for equation (2). One of purposes of this paper is to study the
Borel directions of solutions of nonhomogeneous algebraic differential equation

Qd(z, f) = F (z),(3)

where Qd(z, f) is a differential polynomial in f with degree d as defined at the
beginning and F (z) is a transcendental entire function. In fact, we get the
following results.

Theorem 1.1. Let F (z) be an entire function of infinite order and Qd(z, f)
be a differential polynomial in f of degree d with finite order entire coefficients
aλ(z). If arg z = θ is a Borel direction of F , then it is also a Borel direction
of every non-trivial solution f of equation (3).

If σ(F ) is of finite order in equation (3), it’s easy to see for any non-trivial
solution f , σ(f) ≥ σ(F ), but one can not guarantee that σ(f) = σ(F ) in
general. However, given some restrictions on the solution f , we obtain the
result as follows.

Theorem 1.2. Let F (z) be an entire function of finite order, and Qd(z, f) be a
differential polynomial in f of degree d with entire coefficients aλ(z) satisfying
σ(aλ) < σ(F ). Suppose that f is a non-trivial solution of equation (3) and has
a finite Borel exceptional value, then σ(f) = σ(F ).

Combining Theorem B and Theorem 1.2, we obtain the following result.

Theorem 1.3. Let F (z) be an entire function of finite order, and Qd(z, f) be a
differential polynomial in f of degree d with entire coefficients aλ(z) satisfying
σ(aλ) < σ(F ). Suppose that f is a non-trivial solution of equation (3) and has
a finite Borel exceptional value. If arg z = θ is a Borel direction of F , then for
any angular domain Ω(α, β) contained the ray arg z = θ with β − α > π

σ , there
exists a Borel direction of f in Ω(α, β).

Remark 1.1. By [12, Theorem 1.1], we know that for the special differential
algebraic equation, fnf ′ + Qd(z, f) = u(z)ev(z), where n ≥ d + 1, u(z) is
a nonzero polynomial, v(z) is a nonconstant polynomial, and Qd(z, f) is a
differential polynomial in f of degree d with polynomial coefficients, every non-
trivial solution of this equation satisfies the conclusion of Theorem 1.3.
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For a transcendental entire function g(z), it is easy to see that there may
exist some angular domain Ω(α, β) such that σα,β(g) = σ(g), but this is not true
for arbitrary angular domain. For example, σ−π2 ,

π
2

(ez) = σ(ez) = 1, however
σπ

2 ,
3π
2

(ez) = 0. Thus, a natural question is that how wide are such Ω(α, β)

with σα,β(g) = σ(g)? In [10], the authors showed that under certain conditions
every non-trivial solution f of the following equation (4), the angular domain
satisfying σα,β =∞ must have a definite range of measure. Indeed, they get

Theorem C ([10]). Suppose that A(z), B(z) are entire functions with µ(A) >
σ(B). If f(z) is a non-trivial solution of equation

f ′′(z) +B(z)f ′(z) +A(z)f(z) = 0,(4)

then measI(f) ≥ min{2π, π/µ(A)}, where I(f) = {θ ∈ [0, 2π) : σθ(f) =∞}.

Motivated by this theorem, we consider the measure of the angle Ω(α, β)
such that σα,β(f) = σ(f) for the non-trivial solutions for the nonhomogeneous
algebraic differential equation (3).

Theorem 1.4. Let F (z) be an entire function of finite order, and Qd(z, f) be a
differential polynomial in f of degree d with entire coefficients aλ(z) satisfying
σ(aλ) < σ(F ). Suppose that f is a non-trivial solution of equation (3) and
has a finite Borel exceptional value, then measI(f) ≥ min{2π, π/µ(F )}, where
I(f) = {θ ∈ [0, 2π) : σθ(f) = σ(f)}.

Since entire function f and its derivatives f (n) have the same order, we
also estimate the measure of the angle domain Ω(α, β) satisfies σα,β(f (n)) =

σ(f (n)) = σ(f) for any non-trivial solution f to equation (3).

Theorem 1.5. Let F (z) be a transcendental entire function of finite order and
Qd(z, f) be a differential polynomial in f of degree d with entire coefficients
aλ(z) satisfying σ(aλ) < µ(F ). Suppose that f is a non-trivial solution of
equation (3), then meas(I(f) ∩ I(f (k))) ≥ min{2π, π/µ(F )}, where I(f (k)) =
{θ ∈ [0, 2π) : σθ(f

(k)) = σ(f (k))} and k ≥ 0 is an integer.

Corollary 1.6. Under the hypothesis of Theorem 1.5, we have measI(f (k)) ≥
min{2π, π/µ(F )}.

In the sequel, we shall study the radial distribution of the Julia sets of
solutions to equation (3). At first we give some introduction of some related
concepts. We define f [n], n ∈ N denote the nth iterate of f . The Fatou set F (f)
of transcendental meromorphic function f is the subset of the plane C where
the iterates f [n] of f form a normal family. The complement of F (f) in C is
called the Julia set J(f) of f . It is well known that F (f) is open and completely
invariant under f , J(f) is closed and non-empty, for more information refer to
[4].

Given θ ∈ [0, 2π), if Ω(θ − ε, θ + ε) ∩ J(f) is unbounded for any ε > 0, then
we call the ray arg z = θ the radial distribution of J(f). Define ∆(f) is the set
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of θ ∈ [0, 2π) such that arg z = θ is the radial distribution of J(f). Obviously,
∆(f) is closed and so measurable. We use the meas∆(f) to denote the linear
measure of ∆(f). Many important results of radial distribution of the Julia
sets of transcendental meromorphic functions have been obtained, for example
[3, 8, 9, 14,15,18,23,24,26].

In [24], the authors gave a result which shows the connection between the
radial order σθ(f) and the radial direction of Julia set for an entire function on
the ray arg z = θ. It’s stated as follows.

Theorem D ([24]). Let f(z) be a transcendental entire function. If σθ(f) =
σ(f), then arg z = θ is a radial distribution of the Julia set of f .

Combining Corollary 1.6 and Theorem D, we have:

Corollary 1.7. Under the hypothesis of Theorem 1.5, we have meas∆(f) ≥
min{2π, π/µ(F )} and meas∆(f (k)) ≥ min{2π, π/µ(F )}.

2. Preliminary lemmas

At first, we recall the Nevanlinna characteristic in an angle. Following [6],
we define

Aα,β(r, g) =
ω

π

∫ r

1

(
1

tω
− tω

r2ω

)
{log+ |g(teiα)|+ log+ |g(teiβ)|}dt

t
;

Bα,β(r, g) =
2ω

πrω

∫ β

α

log+ |g(reiθ)| sinω(θ − α)dθ;

Cα,β(r, g) = 2
∑

1<|bn|<r

(
1

|bn|ω
− |bn|

ω

r2ω

)
sinω(βn − α),

where ω = π/(β − α), and bn = |bn|eiβn are poles of g(z) in Ω(α, β) appear-
ing according to their multiplicities. The Nevanlinna angular characteristic is
defined as

Sα,β(r, g) = Aα,β(r, g) +Bα,β(r, g) + Cα,β(r, g).

In particular, we denote the order of Sα,β(r, g) by

ρα,β(g) = lim sup
r→∞

logSα,β(r, g)

log r
.

By [25, Corollary 2.2.2], we have σα,β(g) = ρα,β(g) + ω if g is analytic on
Ω(α, β). It’s clear that if σα,β(g) is finite, then ρα,β(g) is finite. In 1928,
Valiron [17] asked that is it true that a meromorphic function of finite positive
order and its derivative always have a common Borel direction? This problem
still open. But the following result given by Milloux [13] partially answered
Valiron’s problem.

Lemma 2.1 ([13]). If g is an entire function with 0 < σ(g) = σ <∞, then a
Borel direction of order σ for g′ is also a Borel direction of order σ for g.
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For entire functions with infinite order, Sun [16] obtained the following
lemma.

Lemma 2.2 ([16]). Let g be an entire function of infinite order, then the ray
arg z = θ is a Borel direction of infinite order for g if and only if arg z = θ is
a Borel direction of infinite order for g′.

The following lemma is a weaker version of Chuang’s result.

Lemma 2.3 ([5]). Let f be a meromorphic function of infinite order. Then
the ray arg z = θ is one Borel direction of infinite order of f if and only if f
satisfies the equality

lim sup
r→∞

logSθ−ε,θ+ε(r, f)

log r
=∞

for any ε ∈ (0, π/2).

Lemma 2.4 ([10]). Suppose that f is a transcendental entire function with
order σ(f) = σ ∈ (0,∞), and that Ω(α, β) is an angular domain with β−α > π

σ .
If there is no Borel direction of order σ for f in Ω(α, β), then σα,β(f) < σ.

Lemma 2.5 ([20, Borel Lemma]). Let fj(z)(j = 1, 2, . . . , n)(n ≥ 2) be mero-
morphic functions and gj(z)(j = 1, 2, . . . , n) be entire functions such that

(1)
∑n
j=1 fj(z) exp{gj(z)} ≡ 0;

(2) when 1 ≤ j < k ≤ n, gj(z)− gk(z) is not constant;
(3) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, T (r, fj) = o{T (r, exp{gh − gk})}, (r →

∞, r 6∈ E), where E ⊂ (1,∞) is of finite linear measure or finite logarithmic
measure. Then fj(z) ≡ 0 (j = 1, . . . , n).

Lemma 2.6 ([20]). Let f(z) be a transcendental meromorphic function in
complex plane such that σ(f) > 0. If f has two distinct Borel exceptional
values in the extended complex plane, then µ(f) = σ(f) and σ(f) is a positive
integer.

The next lemma shows some estimates for the logarithmic derivative of
functions being analytic in an angle. Before this, we recall the definition of
an R-set; for reference, see [11]. Set B(zn, rn) = {z : |z − zn| < rn}. If∑∞
n=1 rn < ∞ and zn → ∞, then ∪∞n=1B(zn, rn) is called an R-set. Clearly,

the set {|z| : z ∈ ∪∞n=1B(zn, rn)} is of finite linear measure.

Lemma 2.7 ([9, Lemma 2.2]). Let z = reiψ, r0 + 1 < r and α ≤ ψ ≤ β, where
0 < β − α ≤ 2π. Suppose that n(≥ 2) is an integer, and that g(z) is analytic
in Ω(r0, α, β) with ρα,β(g) < ∞. Choose α < α1 < β1 < β. Then, for every
εj ∈ (0, (βj − αj)/2)(j = 1, 2, . . . , n − 1) outside a set of linear measure zero
with

αj = α+

j−1∑
s=1

εs, βj = β −
j−1∑
s=1

εs, j = 2, 3, . . . , n− 1,
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there exist K > 0 and M > 0 only depending on g, ε1, . . . , εn−1 and Ω(αn−1,
βn−1), and not depending on z, such that∣∣∣∣g′(z)g(z)

∣∣∣∣ ≤ KrM (sin k(ψ − α))−2

and ∣∣∣∣g(n)(z)

g(z)

∣∣∣∣ ≤ KrM
sin k(ψ − α)

n−1∏
j=1

sin kεj (ψ − αj)

−2

for all z ∈ Ω(αn−1, βn−1) outside an R-set D, where k = π/(β − α) and
kεj = π/(βj − αj)(j = 1, 2, . . . , n− 1).

Lemma 2.8 ([21,25]). Let f(z) be a transcendental meromorphic function with
lower order µ(f) <∞ and order 0 < σ(f) ≤ ∞. Then, for any positive number
λ with µ(f) ≤ λ ≤ σ(f) and any set H of finite measure, there exists a sequence
{rn} satisfies

(1) rn 6∈ H, limn→∞ rn/n =∞;
(2) lim infn→∞ log T (rn, f)/ log rn ≥ λ;
(3) T (r, f) < (1 + o(1))(2t/rn)λT (rn/2, f), t ∈ [rn/n, nrn];
(4) t−λ−εnT (t, f) ≤ 2λ+1r−λ−εnn T (rn, f), 1 ≤ t ≤ nrn, εn = (log n)−2.

Such {rn} is called a sequence of Pólya peaks of order λ outside H. The
following lemma, which related to Pólya peaks, is called the spread relation;
see [2].

Lemma 2.9 ([2]). Let f(z) be a transcendental meromorphic function with
positive order and finite lower order, and has a deficient value a ∈ C. Then,
for any sequence of Pólya peaks {rn} of order λ > 0, µ(f) ≤ λ ≤ σ(f), and
any positive functionΥ(r)→ 0 as rn →∞, we have

lim inf
rn→∞

measDΥ(rn, a) ≥ min

{
2π,

4

λ
arcsin

√
δ(a, f)

2

}
,

where

DΥ(r, a) =

{
θ ∈ [0, 2π) : log+ 1

|f(reiθ)− a|
> Υ(r)T (r, f)

}
, a ∈ C

and

DΥ(r,∞) =
{
θ ∈ [0, 2π) : log+ |f(reiθ)| > Υ(r)T (r, f)

}
.

Lemma 2.10 ([22]). Let f(z) be meromorphic and of order σ(0 < σ <∞) in
the finite plane. If arg z = θ0(0 ≤ θ0 < 2π) is a Borel direction of f(z), then
there exists a sequence of Borel filling discs Γj = {z : |z − zj | < εj |zj |}, zj =
|zj |eiθ0 , (j = 1, 2, . . .) with limj→∞ |zj | = ∞, limj→∞ εj = 0 such that f(z)
takes every complex number at least nj = |zj |σ−δj times in Γj, except possibly
for those numbers contained in two spherical disks with radius e−nj , where
limj→∞ δj = 0.
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3. Proof of theorems

Proof of Theorem 1.1. By the assumption that F (z) is of infinite order, aλ(z)
is of finite order and the fact f (k) has the same order as f , it’s easy to see that
every solution f of (3) must be entire function with infinite order. Suppose
that arg z = θ ∈ [0, 2π) is a Borel direction of F (z). By Lemma 2.3, for any
sufficiently small ε,

lim sup
r→∞

logSθ−ε,θ+ε(r, F )

log r
=∞.(5)

By (3), there exist positive constants Mi, (i = 0, 1, . . . , n) such that

Sθ−ε,θ+ε(r, F ) = Sθ−ε,θ+ε(r,Qd(z, f))

≤
∑
aλ∈Λ

Sθ−ε,θ+ε(r, aλ) +

n∑
i=0

MiSθ−ε,θ+ε(r, f
(i)),

which implies

(1− o(1))Sθ−ε,θ+ε(r, F ) ≤
n∑
i=0

MiSθ−ε,θ+ε(r, f
(i)).

This means there exists at least one i0, (0 ≤ i0 ≤ n) satisfies

lim sup
r→∞

logSθ−ε,θ+ε(r, f
(i0))

log r
=∞.(6)

Using Lemma 2.3 again, we know that the ray arg z = θ is also a Borel direction
of f (i0). Thus, by Lemma 2.2, the ray arg z = θ is a Borel direction of f . �

Proof of Theorem 1.2. Without loss of generality, assume the finite Borel ex-
ceptional value of f is 0. Let z1, z2, . . . , zn, . . . be non-null zeros of f , and each
zero is repeated as many times as its multiplicity. Then by Lemma 2.6 and
Weierstrass factorization theorem [11, Theorem 1.2.4], we know that

f(z) = eg(z)zm0

∞∏
n=1

Emn

(
z

zn

)
:= h(z)eg(z),(7)

where m0,mn, (n = 1, 2, . . .) are some integers, g(z) is an entire function,

Emn

(
z
zn

)
is the canonical product of f(z) and h(z) = zm0

∏∞
n=1Emn

(
z
zn

)
.

From Ash [1, Theorem 4.3.6] we have λ(f) = λ(h) = σ(h). From the definition
of Borel exceptional value [20, p. 104], we get

λ(f) = lim sup
r→∞

log+N(r, 1/f)

log r
< σ(f).

Thus, we have σ(h) < σ(f). Calculating the derivatives of f , it is clear that
we can set f (i) := hi(z)e

g(z) for i = 1, 2, . . . , n, where hi(z) are entire functions
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satisfying σ(hi) < σ(f). Substituting the expressions of f, f ′, . . . , f (n) into (3)
and noting σ(aλ) < σ(F ) ≤ σ(f), we can obtain

(8) Hd(z)e
dg(z) +Hd−1(z)e(d−1)g(z) + · · ·+H1(z)eg(z) +H0(z) = F (z),

where Hi(z) (i = 1, 2, . . . , d) are entire functions satisfying σ(Hi) < σ(f) and
H0(z) = aλ0

(λ0 = (0, 0, . . . , 0) ∈ Λ) satisfying σ(H0) < σ(F ). Applying
Lemma 2.5 to (8), we can deduce that there exists integer i0, 1 ≤ i0 ≤ d such
that F (z) −H0(z) = Hi0e

i0g(z). Therefore, we have σ(f) = σ(F ) < +∞ and
g(z) is a polynomial. �

Proof of Theorem 1.3. Suppose that arg z = θ(0 ≤ θ < 2π) is a Borel direction
of order σ for F (z). By Lemma 2.10, there exists a sequence of disks Γj =
{z : |z − zj | < εj |zj |} with arg zj = θ, limj→∞ |zj | = ∞, limj→∞ εj = 0. Note
that for entire functions,∞ is always a Picard value,∞ is located in one of the
two spherical discs in Lemma 2.10. Denote the spherical distance of z1, z2 by
|z1, z2|. Therefore, for all sufficiently large j, we can find a point bj ∈ Γj such
that

|F (bj),∞| =
1

(1 + |F (bj)|2)
1
2

= 2e−|zj |
σ−δj

with limj→∞ δj = 0. Then we can find a constant C independent of j such
that for all sufficiently large j

|F (bj)| > Ce|zj |
σ−δj

.

Since |bj | = (1 + o(1))|zj |, we can conclude that for any given ε > 0

lim sup
r→∞

log logM(r,Ω(θ − ε, θ + ε), F )

log r
≥ σ.(9)

Suppose that there exists no Borel direction of f in Ω(α, β). By Theorem 1.2
we know that 0 < σ(f) = σ < ∞. By Lemma 2.1, there also exists no Borel
direction of f (k), (k = 1, 2, . . . , n) in Ω(α, β). Then by Lemma 2.4, we have

lim sup
r→∞

log logM(r,Ω(α, β), f (k))

log r
< σ, (k = 0, 1, 2, . . . , n).(10)

Since σ(aλ) < σ(F ) = σ, substituting (10) and (9) into (3) yields a contradic-
tion. Therefore, there must have at least one Borel direction in Ω(α, β). �

Proof of Theorem 1.4. Suppose that f is a non-trivial solution of equation (3)
under the hypothesis of this theorem. By Theorem 1.2 we know that σ(f) =
σ(F ) := σ < +∞. We assume that measI(f) < ν := min{2π, π/µ(F )}, so ζ :=

ν −measI(f) > 0. Clearly S = (0, 2π)\I(f) is open, so it consists of at most
countably many open intervals. We can choose finitely many open intervals
Ii := (αi, βi), i = 1, 2, . . . ,m satisfying [αi, βi] ⊂ S and meas(S\ ∪mi=1 Ii) <

ζ
4 .

For the angular domain Ω(αi, βi), it is easy to see

Ω(αi, βi) ∩ I(f) = ∅.
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This implies that for each i = 1, 2, . . . ,m, we have σαi,βi(f) < σ, that is, for
sufficiently large r, M(r,Ω(αi, βi), f) < exp{rσ−ε}, where ε is a sufficiently
small positive constant. Moreover, it’s clear that ραi,βi(f) is finite. Therefore,
by Lemma 2.7, for sufficiently small ε > 0, there exist two constants M > 0
and K > 0 such that∣∣∣∣f (s)(z)

f(z)

∣∣∣∣ ≤ KrM , s = 1, 2, . . . , n,(11)

for all z ∈ ∪ki=1Ω(αi + 2ε, βi − 2ε), outside an R-set H. Applying Lemma 2.9
to F (z), there exists a sequence of Pólya peak {rn} of order µ(F ) such that
rn 6∈ {|z|, z ∈ H}, and for sufficiently large n,

meas{DΥ(rn,∞)} ≥ ν − ζ

4
,(12)

where we take the function Υ(r) as

Υ(r) =

√
rσ−ε

T (r, F )

for given sufficiently small positive constant ε. Without loss of generality, we
assume that (12) holds for all n, and simplified denote D(rn) = DΥ(rn,∞).
Obviously,

meas(D(rn) ∩ S) = meas(D(rn)\(I(f) ∩D(rn)))

≥ measD(rn)−measI(f) >
3ζ

4
.(13)

Then, for each n we have

meas((∪mi=1Ii) ∩D(rn)) = meas(S ∩D(rn))−meas((S\ ∪mi=1 Ii) ∩D(rn))

>
3ζ

4
− ζ

4
=
ζ

2
.(14)

This means there exists at least one open interval Ii0 = (α, β) of Ii(i =
1, 2, . . . ,m) such that for infinitely many j,

meas(D(rj) ∩ (α, β)) >
ζ

2m
> 0.(15)

Set Gj = D(rj) ∩ (α + 2ε, β − 2ε), it follows from the definition of D(rj) in
Lemma 2.9, T (r, F ) = m(r, F ) and (15) that∫

Gj

log+ |F (rje
iθ)|dθ ≥ meas(Gj)Υ(rj)m(rj , F )

≥ ζ

4m
Υ(rj)m(rj , F ).(16)
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Note σ(aλ) < σ(F ) = σ(f) and set E1 := {θ ∈ [0, 2π) : |f(reiθ)| < 1}, E2 :=
[0, 2π)\E1. By (3), (11), we can get

∫
Gj

log+ |F (rje
iθ)|dθ

(17)

=

∫
Gj∩E1

log+

∣∣∣∣∣∑
λ∈Λ

aλf
λ0(f ′)λ1 . . . (f (n))λn

∣∣∣∣∣ dθ
+

∫
Gj∩E2

log+

∣∣∣∣∣fd∑
λ∈Λ

aλf
λ0(f ′)λ1 . . . (f (n))λn

fd

∣∣∣∣∣ dθ
≤
∫
Gj∩E1

∑
λ∈Λ

(
log+ |aλ|+ λ0 log+ |f |+

n∑
i=1

log+

∣∣∣∣f (i)

f

∣∣∣∣λi
)
dθ

+

∫
Gj∩E2

∑
λ∈Λ

(
d log+ |f |+ log+ |aλ|+ log+

∣∣∣∣ 1

fd−
∑n
i=0 λi

∣∣∣∣+

n∑
i=1

log+

∣∣∣∣f (i)

f

∣∣∣∣λi
)
dθ

+O(1)

≤
∫
Gj

∑
λ∈Λ

(
n∑
i=1

log+

∣∣∣∣f (i)

f

∣∣∣∣+ d log+ |f |+ log+ |aλ|

)
dθ +O(1)

≤ meas(Gj)c0r
σ−ε = meas(Gj)c0Υ2(rj)m(rj , F ),

where c0 is a positive constant. From (16) and (17) we get a contradiction as
the fact Υ(rj)→ 0 when j →∞. Thus, we complete the proof. �

Proof of Theorem 1.5. We know that every non-trivial solution f of the equa-
tion is an entire function with σ(f) = σ(F ) := σ. We obtain the assertion by
reduction to contradiction. Assume that

(18) meas(I(f) ∩ I(f (k))) < ν = min{2π, π/µ(F )}

and so

(19) ξ := ν −meas(I(f) ∩ I(f (k))) > 0.

Applying Lemma 2.8 to F , we have a Pólya peak {rj} of order µ(F ) with all
rj 6∈ H. Since F is transcendental entire function, it follows the Nevanlinna
deficient δ(∞, F ) = 1. By Lemma 2.9, for the Pólya peak {rj}, we have

(20) lim inf
rj→∞

meas(DΥ(rj ,∞)) ≥ π/µ(F ),

where the function Υ(r) is defined by

(21) Υ(r) =

√
rσ−ε

m(r, F )
,
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ε is a sufficiently small positive constant and m(r, F ) is the proximation func-
tion of F . Obviously, Υ(r) is positive and limr→∞Υ(r) = 0. For the sake of
simplicity, we denote DΥ(rj ,∞) by D(rj) in the following. We shall show that
there must exist an open interval

(22) E = (α, β) ⊂ I(f (k))c

such that

(23) lim
j→∞

meas(I(f) ∩D(rj) ∩ E) > 0,

where I(f (k))c := [0, 2π)\I(f (k)). In order to achieve this goal, we shall prove
the following firstly.

(24) lim
j→∞

meas(D(rj)\I(f)) = 0.

Otherwise, suppose that there is a subseries {rjk} such that

(25) lim
k→∞

meas(D(rjk)\I(f)) > 0,

then there exist θ0 ∈ Ic and η > 0 satisfying

(26) lim
k→∞

meas((θ0 − η, θ0 + η) ∩ (D(rjk)\I(f))) > 0.

Since arg z = θ0 is not in I(f), it follows σθ0−η,θ0+η(f) < σ, that is, for
sufficiently large r,

M(r,Ω(θ0 − η, θ0 + η), f) < exp{rσ−ε},(27)

where ε is a sufficiently small positive constant. Moreover, by Lemma 2.7, there
exist constants M > 0 and K > 0 such that

(28)

∣∣∣∣f (s)(z)

f(z)

∣∣∣∣ ≤ KrM , (s = 1, 2, . . . , n),

for all z ∈ Ω(r0, θ0 − η + ζ, θ0 + η − ζ), outside an R-set H.
Since ζ can be chosen sufficiently small, from (26) we have

(29) lim
k→∞

meas((θ0 − η + ζ, θ0 + η − ζ) ∩D(rjk)) > 0.

Thus, by Lemma 2.9 we can find an infinite series {rjkeiθjk } such that for all
sufficiently large k,

(30) log+ |F (rjke
iθjk )| > Υ(rjk)T (rjk , F ) = Υ(rjk)m(rjk , F ),

where θjk ∈ Gjk := (θ0− η+ ζ, θ0 + η− ζ)∩D(rjk). Then, for sufficiently large
k, we have

(31)

∫
Gjk

log+ |F (rjke
iθjk )|dθ ≥ meas(Fjk)Υ(rjk)m(rjk , F ).

By the same arguments used in (17) in the proof of Theorem 1.4, we obtain a
contradiction, which implies (24) is valid.
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By Theorem 1.4, we know that

(32) measI(f) ≥ ν.
From Lemma 2.9, we have, for all sufficiently large j and any positive ε,

(33) measD(rj) > ν − ε.
Combining (24), (32) and (33) follows that, for all sufficiently large j,

(34) meas(I(f) ∩D(rj)) ≥ ν − ξ/4,

where ξ is defined in (19). Since the interior of ∆(f (k))c is open, so it consists of
at most countably open intervals. We can choose finitely many open intervals
Ej , (j = 1, 2, . . . ,m) satisfying

(35) Ej ⊂ I(f (k))c, meas(I(f (k))c\ ∪mi=1 Ei) < ξ/4.

Since, for sufficiently large j,

meas(I(f) ∩D(rj) ∩ (∪mi=1Ei)) +meas(I(f) ∩D(rj) ∩ I(f (k)))

= meas(I(f) ∩D(rj) ∩ (I(f (k)) ∪ (∪mi=1Ei))) ≥ ν − ξ/2,(36)

we have

meas(I(f) ∩D(rj) ∩ (∪mi=1Ei)) ≥ ν − ξ/2−meas(I ∩D(rj) ∩ I(f (k)))

≥ ν − ξ/2−meas(I(f) ∩ I(f (k))) = ξ/2.(37)

Thus, there exists an open interval Ei0 = (α, β) ⊂ ∪mi=1Ei ⊂ I(f (k))c such that,
for infinitely many sufficiently large j,

(38) meas(I(f) ∩D(rj) ∩ Ei0) ≥ ξ

2m
> 0.

Then, we prove (23) holds.

From (23), we know that there are θ̃0 and η̃ > 0 such that

(39) (θ̃0 − η̃, θ̃0 + η̃) ⊂ E
and

(40) lim
j→∞

meas(I(f) ∩D(rj) ∩ (θ̃0 − η̃, θ̃0 + η̃)) > 0.

By (39) it follows σθ̃0−η̃,θ̃0+η̃(f (k)) < σ, that is, for sufficiently large r,

M(r,Ω(θ̃0 − η̃, θ̃0 + η̃), f (k)) < exp{rσ−ε},(41)

where ε is a sufficiently small positive constant.
By (40) and Lemma 2.9 we can choose an unbounded series {rjeiθj}, for all

sufficiently large j such that

(42) log+ |F (rje
iθj )| > Υ(rj)m(rj , F ),

where θj ∈ I(f) ∩ D(rj) ∩ (θ̃0 − η̃, θ̃0 + η̃). Fixed rJe
iθJ , and take a rje

iθj ∈
{rjeiθj}. Take a simple Jordan arc γ in Ω(r̃0, θ̃0 − η̃, θ̃0 + η̃) which connecting
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rJe
iθJ to rJe

iθj along |z| = rJ , and connecting rJe
iθj to rje

iθj along arg z = θj .
For any z ∈ γ, γz denotes a part of γ, which connecting rJe

iθJ to z. Let L(γ)
be the length of γ. Clearly, L(γ) = O(rj), j →∞. By (41), it follows

|f (k−1)(z)| ≤
∫
γz

|f (k)(z)||dz|+ ck

≤ O(exp{rσ−εj }L(γ)) + ck ≤ O(rj exp{rσ−εj }), j →∞.
Similarly, we have

|f (k−2)(z)| ≤
∫
γz

|f (k−1)(z)||dz|+ ck−1 ≤ O(r2
j exp{rσ−εj }), j →∞,

...

|f(z)| ≤
∫
γz

|f ′(z)||dz|+ c1 ≤ O(rkj exp{rσ−εj })

≤ O(2 exp{rσ−εj }), j →∞,(43)

where c1, c2, . . . , ck are constants, which are independent of j. Therefore,

M(r,Ω(θ̃0 − η̃, θ̃0 + η̃), f) < O(2 exp{rσ−ε}),(44)

where ε is a sufficiently small positive constant.

By Lemma 2.7, we know (28) also holds for all z ∈ Ω(r̃0, θ̃0−η̃+ ζ̃, θ̃0+η̃− ζ̃),
outside an R-set H. Combining (28), (42) and (44), and applying the similar
argument as (16) and (17) in the proof of Theorem 1.4, we can deduce a
contradiction. Therefore, it follows

(45) meas(I(f) ∩ I(f (k))) ≥ min{2π, π/µ(F )}.
Then we complete the proof. �
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leurs intégrales, J. Anal. Math. 1 (1951), 244–330.

[14] J. Qiao, On limiting directions of Julia set, Ann. Acad. Sci. Fenn. Math. 26 (2001), no.
2, 391–399.

[15] L. Qiu and S. J. Wu, Radial distributions of Julia sets of meromorphic functions, J.

Aust. Math. Soc. 81 (2006), no. 3, 363–368.
[16] D. C. Sun, Common Borel directions of meromorphic functions of infinite order and its

derivatives, Acta Math. Sinica 30 (1987), no. 5, 641–647.
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