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ON ROGERS–RAMANUJAN TYPE IDENTITIES FOR

OVERPARTITIONS AND GENERALIZED LATTICE PATHS

Megha Goyal

Abstract. In this paper we introduce and study the lattice paths for

which the horizontal step is allowed at height h ≥ 0, h ∈ Z. By do-
ing so these paths generalize the heavily studied weighted lattice paths

that consist of horizontal steps allowed at height zero only. Six q–series
identities of Rogers–Ramanujan type are studied combinatorially using

these generalized lattice paths. The results are further extended by us-

ing (n + t)–color overpartitions. Finally, we will establish that there are
certain equinumerous families of (n+ t)–color overpartitions and the gen-

eralized lattice paths.

1. Introduction and definitions

For n to be a natural number, the rising q–factorial of a with base q is
defined by (a; q)0 = 1 and (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1), where
|q| < 1. Any series involving this rising q–factorial is called a q–series (or basic
series or Eulerian series). In the literature, we see that several mathematicians
have established connections between q–series, partition identities and different
combinatorial parameters, see for instance [2, 9–11,14]. Using weighted lattice
paths as combinatorial tool, several basic series have been interpreted combi-
natorially [1, 4–6, 12]. But there are many q–series identities which cannot be
interpreted combinatorially by using these classical weighted lattice paths. In
this paper we will generalize these lattice paths by allowing the horizontal step
to be at height h ≥ 0. By doing so, the generalized lattice paths are quite
helpful to interpret q–series identities combinatorially which have not been in-
terpreted earlier in terms of weighted lattice paths. Our main objective in this
paper is to use these generalized lattice paths as an elementary tool to study
the following six q–series identities of Rogers–Ramanujan type combinatorially:

∞∑
λ=0

qλ
2

(−q; q2)λ
(q4; q4)λ(q; q2)λ

=
(−q2; q10)∞(−q5; q10)∞(−q8; q10)∞(−q; q2)∞

(q10; q10)−1∞ (q3; q10)−1∞ (q7; q10)−1∞ (q2; q2)∞
,(1)
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∞∑
λ=0

qλ
2+2λ(−q; q2)λ

(q4; q4)λ(q; q2)λ
=

(−q4; q10)∞(−q5; q10)∞(−q6; q10)∞(−q; q2)∞

(q10; q10)−1∞ (q; q10)−1∞ (q9; q10)−1∞ (q2; q2)∞
,(2)

∞∑
λ=0

qλ
2+2λ(−q; q2)λ

(q4; q4)λ(q; q2)λ+1
=

(−q; q2)∞
(q20; q20)∞(q5; q20)∞(q15; q20)∞(q2; q2)∞

,(3)

∞∑
λ=0

qλ
2

(−q; q2)λ
(q2; q2)λ(q; q2)λ

=
(−q; q2)∞(−q2; q6)∞(−q4; q6)∞(q6; q6)∞

(q2; q2)∞
,(4)

∞∑
λ=0

qλ
2+λ(−q; q2)λ

(q2; q2)λ(q; q2)λ+1
=

(q4; q12)∞(q8; q12)∞(q12; q12)∞
(q; q)∞

,(5)

∞∑
λ=0

qλ
2+2λ(−q; q2)λ

(q2; q2)λ(q; q2)λ+1
=

(q2; q12)∞(q10; q12)∞(q12; q12)∞
(q; q)∞

.(6)

These six q–series identities are appearing in the Chu and Zhang compendium
[7]. Note that the right hand sides of (1)–(6) can be easily interpreted as the
generating functions for certain restricted ordinary partitions. Our main aim is
to interpret the left hand side of (1)–(6) combinatorially by using generalized
lattice paths and (n + t)–color overpartitions. This paper is organized as fol-
lows. In Section 2 we will use constructive approach to yield the combinatorial
interpretation of the L.H.S. of q–series identities (1)–(6) in terms of generalized
lattice paths. In Section 3 we will use q–functional equations and combinatorial
arguments to further extend these results in terms of (n + t)–color overparti-
tions. Finally, in Section 4 we will establish bijections between certain classes
of (n+t)–color overpartitions and the generalized lattice paths. Before we state
our main results we first recall some definitions:

Definition ([3]). A partition with “(n + t) copies of n”, t ≥ 0, is a partition
in which a part of size n, n ≥ 0, can come in (n + t) different colors denoted
by subscripts: n1, n2, . . . , nn+t. Note that zeros are permitted if and only if t
is greater than or equal to one. Also, zeros are not permitted to repeat in any
partition. Furthermore, in an (n+ t)–color partition, the parts are ordered in
a nonincreasing sequence first by size and then by color, so ap > bp if a > b
and ap+k > ap if k > 0.

Remark 1.1. We note that if we take t = 0, then these are nothing but the
n–color partitions.

Definition. The weighted difference of two parts ap, bq (a ≥ b) is defined by
a− b− p− q and is denoted by ((ap − bq)).

Example 1.2. There are twelve (n+ 1)–color partitions of 2:

23, 23 + 01, 12 + 12, 12 + 12 + 01,

22, 22 + 01, 12 + 11, 12 + 11 + 01,

21, 21 + 01, 11 + 11, 11 + 11 + 01.
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In [13] the (n+ t)–color overpartitions are defined as:

Definition. An (n+t)–color overpartition is an (n+t)–color partition in which
the final occurrence of a part ap may be overlined.

Example 1.3. There are sixteen n–color overpartitions of 3:

33, 32, 31, 33, 32, 31,

22 + 11, 22 + 11, 22 + 11, 22 + 11,

21 + 11, 21 + 11, 21 + 11, 21 + 11,

11 + 11 + 11, 11 + 11 + 11.

We describe Generalized Lattice Paths as follows:

Definition. All paths will be of finite length lying in the first quadrant. They
will begin on the Y –axis and terminate on the X–axis. Following four unitary
steps are allowed at each step:

North–East NE : from (i, j) to (i+ 1, j + 1).
South–East SE : from (i, j) to (i+ 1, j − 1), only allowed if j > 0.
South S : from (i, j) to (i, j − 1), only allowed if j ≥ 1.
Horizontal (East) H : from (i, j) to (i+ 1, j).

All our lattice paths are either empty or terminate with a southeast step:
from (i, 1) to (i+ 1, 0).

In describing generalized lattice paths, the following terminology is used:
Peak : Either a vertex on the Y –axis which is followed by a S step or SE

step or a vertex preceded by a North–East step and followed by a South step
(in which case it is called a NES peak) or by a South–East step (in which case
it is called NESE peak).

Valley : A vertex preceded by a S step or SE step and followed by a NE
step. Note that a S step or SE step followed by H step followed by a NE step
does not constitute a valley.

Mountain: A section of the path which starts on either the X– or Y –axis,
which ends on the X–axis and which does not touch the X–axis anywhere in
between the end points. Every mountain has at least one peak and may have
more than one.

Plain: A section of the path consisting of only H steps which starts at a
vertex preceded by a SE step and ends at a vertex followed by a NE step. Note
that a sequence of consecutive horizontal steps which is immediately preceded
by a S step and immediately followed by a SE step or a NE step does not
constitute a plain.

Height of a vertex is its Y –coordinate.
Weight of a vertex is its X–coordinate.
Weight of a Generalized Lattice Path is the sum of the weights of its peaks.
Length of a sequence of Horizontal steps is the number of H steps which

belong to it.
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Depth of a sequence of South steps is the number of S steps which belong
to it.

Remark 1.4. When in the lattice paths H steps are allowed only at height zero,
then this definition reduces to the definition of the lattice paths as introduced
and studied in [8]. And when the lattice paths have no S steps and H steps
are allowed only at height zero, then this is the definition of the lattice paths
given in [4]. Thus by allowing the H steps at height h ≥ 0 makes it possible to
have plains above the horizontal axis also.

0
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3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 1

Example 1.5. In this example, there is one peak of height 1 followed by a
valley at height zero, one peak of height 3 followed by a sequence of S steps of
depth 1 and a sequence of H steps of length 1 at height 2. These are further
followed by a plain of length 3 at height 0, two peaks of height 3 along with a
valley at height 2, further followed by a plain of length 2 at height 1 which is
followed by a peak of height 2. The weight of this path is 0+4+13+15+20 = 52.

2. Generalized lattice paths and combinatorial identities

In this section we shall prove that the basic series identities (1)–(6) have
their combinatorial counterparts for generalized lattice paths in the form of
the following theorems respectively.

Theorem 2.1. Let P1(µ) denote the number of generalized lattice paths of
weight µ which start at (0, 0), such that (i) they have no valley above height 0,
(ii) the length of plains, if any, is ≡ 0 (mod 4) between any two consecutive
mountains, (iii) there is no sequence of S steps with depth > 1 and (iv) any
sequence of H steps at height h > 0 cannot have length > 1. Let

Q1(µ) =

µ∑
l=0

U1(µ− l)V1(l),

where U1(µ) is the number of ordinary partitions of µ into parts ≡ ±2,±4,±8
(mod 20) and V1(µ) denotes the number of ordinary partitions of µ into distinct
parts ≡ ±1,±2, 5 (mod 10), where parts ≡ 5 (mod 10) are counted twice. Then

∞∑
µ=0

P1(µ)qµ =

∞∑
µ=0

Q1(µ)qµ =

∞∑
λ=0

qλ
2

(−q; q2)λ
(q4; q4)λ(q; q2)λ

for all µ.
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Theorem 2.2. Let P2(µ) denote the number of generalized lattice paths of
weight µ which start at (0, 0), such that (i) they have no valley above height 0,
(ii) there is a plain of length 2 in the beginning of the path and other plains,
if any, are of length ≡ 0 (mod 4) between any two consecutive mountains, (iii)
there is no sequence of S steps with depth > 1, (iv) any sequence of H steps at
height h > 0 cannot have length > 1 and (v) the weight of the first peak is ≥ 3.
Let

Q2(µ) =

µ∑
l=0

U2(µ− l)V2(l),

where U2(µ) is the number of partitions of µ into parts ≡ ±4,±6,±8 (mod 20)
and V2(µ) denotes the number of partitions of µ into distinct parts ≡ ±3,±4, 5
(mod 10), where parts ≡ 5 (mod 10) are counted twice. Then

∞∑
µ=0

P2(µ)qµ =

∞∑
µ=0

Q2(µ)qµ =

∞∑
λ=0

qλ
2+2λ(−q; q2)λ

(q4; q4)λ(q; q2)λ
for all µ.

Theorem 2.3. Let P3(µ) denote the number of generalized lattice paths of
weight µ which start at (0, 2), such that (i) they have no valley above height 0,
(ii) the length of plains, if any, is ≡ 0 (mod 4) between any two consecutive
mountains, (iii) there is no sequence of S steps with depth > 1 and (iv) any
sequence of H steps at height h > 0 cannot have length > 1. Let Q3(µ) denote
the number of partitions of µ into parts ≡ ±1,±3,±4 ± 7,±8 ± 9 (mod 20).
Then

∞∑
µ=0

P3(µ)qµ =

∞∑
µ=0

Q3(µ)qµ =

∞∑
λ=0

qλ
2+2λ(−q; q2)λ

(q4; q4)λ(q; q2)λ+1
for all µ.

Theorem 2.4. Let P4(µ) denote the number of generalized lattice paths of
weight µ which start at (0, 0), such that (i) they have no valley above height 0,
(ii) there is no plain with odd length between any two consecutive mountains,
(iii) there is no sequence of S steps with depth > 1 and (iv) any sequence of H
steps at height h > 0 cannot have length > 1. Let Q4(µ) denote the number
of partitions of µ such that odd parts are distinct, even parts are ≡ ±2,±4
(mod 12) and the parts which are ≡ ±2 (mod 12) are counted twice. Then

∞∑
µ=0

P4(µ)qµ =

∞∑
µ=0

Q4(µ)qµ =

∞∑
λ=0

qλ
2

(−q; q2)λ
(q2; q2)λ(q; q2)λ

for all µ.

Theorem 2.5. Let P5(µ) denote the number of generalized lattice paths of
weight µ which start at (0, 1), such that (i) they have no valley above height 0,
(ii) there is no plain with odd length between any two consecutive mountains,
(iii) there is no sequence of S steps with depth > 1 and (iv) any sequence of H
steps at height h > 0 cannot have length > 1. Let Q5(µ) denote the number of
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partitions of µ into parts 6≡ 0,±4 (mod 12). Then
∞∑
µ=0

P5(µ)qµ =

∞∑
µ=0

Q5(µ)qµ =

∞∑
λ=0

qλ
2+λ(−q; q2)λ

(q2; q2)λ(q; q2)λ+1
for all µ.

Theorem 2.6. Let P6(µ) denote the number of generalized lattice paths of
weight µ which start at (0, 2), such that (i) they have no valley above height 0,
(ii) there is no plain with odd length between any two consecutive mountains,
(iii) there is no sequence of S steps with depth > 1 and (iv) any sequence of H
steps at height h > 0 cannot have length > 1. Let Q6(µ) denote the number of
partitions of µ into parts 6≡ 0,±2 (mod 12). Then

∞∑
µ=0

P6(µ)qµ =

∞∑
µ=0

Q6(µ)qµ =

∞∑
λ=0

qλ
2+2λ(−q; q2)λ

(q2; q2)λ(q; q2)λ+1
for all µ.

As Theorems 2.1–2.6 have similar proofs, so we will discuss the detailed
proof of Theorem 2.1 and provide an outline of the proofs of the remaining
theorems.

2.1. Proof of Theorem 2.1

We will prove this theorem by using the constructive approach.

Proof. In qm
2
(−q;q2)m

(q;q2)m(q4;q4)m
the factor qm

2

generates the lattice path of m peaks

each of height 1 starting at (0,0) and terminating at (2m, 0).
If m=4, the path begins as: In the above figure we consider two successive

0
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2

3

0 1 2 3 4 5 6 7 8 9

Figure 2

peaks, say, ith and (i+1)st. Their corresponding coordinates are (2i−1, 1) and
(2i+1, 1) respectively. The factor 1

(q4;q4)m
generates m nonnegative multiples of

ith (i+1)st

Figure 3. ith and (i+ 1)st peaks
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4, say α1 ≥ α2 ≥ · · · ≥ αm ≥ 0, which are encoded by inserting αm horizontal
steps in front of the first mountain and αi − αi+1 horizontal steps in front of
the (m − i + 1)st mountain, 1 ≤ i ≤ m. Fig. 3 now becomes Fig. 4. The

ith (i+1)st

Figure 4. ith and (i+ 1)st peaks

factor 1/(q; q2)m generates m nonnegative multiples of (2i − 1), 1 ≤ i ≤ m,
say, β1 × 1, β2 × 3, . . . , βm × (2m− 1). This is encoded by having the ith peak
grow to height βm−i+1 + 1 by inserting NESE steps. Each increase by one
in the height of a given peak increases its weight by one and the weight of
each subsequent peak by two. Fig. 4 changes to Fig. 5a or 5b or 5c depending
upon whether βm−i = βm−i+1 or βm−i > βm−i+1 or βm−i < βm−i+1. The

(a) (b)

(c)

Figure 5

factor (−q; q2)m generates m nonnegative multiples of (2i − 1), 1 ≤ i ≤ m,
say, γ1 × 1, γ2 × 3, . . . , γm × (2m − 1), where each γi (1 ≤ i ≤ m) is 0 or 1.
This is encoded by having the ith peak grow to height γm−i+1 +βm−i+1 + 1 by
inserting NE steps followed by S steps with depth γm−i+1 and then followed
by H steps with length γm−i+1. The depth of this S step and the length of this
H step cannot exceed one as γi = 0 or 1; 1 ≤ i ≤ m. This causes an increase
of γm−i+1 in the height of ith peak. Fig. 5 now changes to Fig. 6 or Fig. 7 or
Fig. 8 depending upon γm−i+1 = 1, γm−i = 0 or γm−i+1 = 0, γm−i = 1 or
γm−i+1 = γm−i = 1. In the case when γm−i+1 = γm−i = 0, the new figure looks
like Fig. 5. Every lattice path enumerated by P1(µ) is uniquely generated in



456 M. GOYAL

(a) (b)

(c)

Figure 6

(a) (b)

(c)

Figure 7

(a) (b)

(c)

Figure 8

this manner. Hence
∞∑
µ=0

P1(µ)qµ =

∞∑
λ=0

qλ
2

(−q; q2)λ
(q4; q4)λ(q; q2)λ

.
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Furthermore, we have

(−q2; q10)∞(−q5; q10)∞(−q8; q10)∞(−q; q2)∞

(q10; q10)−1∞ (q3; q10)−1∞ (q7; q10)−1∞ (q2; q2)∞

=

∞∏
n=1

(1+q10n−5)(1+q10n−2)(1+q10n−8)(1+q2n−1)(1−q10n)(1−q10n−7)(1−q10n−3)
(1−q2n)

=

∞∏
n=1

(1 + q10n−5)(1 + q10n−2)(1 + q10n−8)(1− q10n−3)(1− q10n−7)(
(1+q10n−1)(1+q10n−3)(1+q10n−5)(1+q10n−7)(1+q10n−9)

(1−q10n−2)(1−q10n−4)(1−q10n−6)(1−q10n−8)

)
=

∞∏
n=1

(1+q10n−5)2(1+q10n−2)(1+q10n−8)(1+q10n−1)(1+q10n−9)
(1−q10n−2)(1−q10n−8)(

(1−q20n−14)(1−q20n−6)
(1−q20n−4)(1−q20n−14)(1−q20n−6)(1−q20n−16)

)
=

∞∏
n=1

(1+q10n−5)2(1+q10n−2)(1+q10n−8)(1+q10n−1)(1+q10n−9)
(1−q20n−2)(1−q20n−12)(1−q20n−4)(1−q20n−16)(1−q20n−8)(1−q20n−18)

=

∞∑
µ=0

Q1(µ)qµ.

Thus, by q–series identity given in (1), we get

∞∑
µ=0

P1(µ)qµ =

∞∑
µ=0

Q1(µ)qµ for all µ.

This completes the proof of Theorem 2.1 �

2.2. Outline of the proofs of Theorems 2.2–2.6

Theorem 2.2: An appeal to Theorem 2.1, the extra factor q2m puts a plain of
length 2 in front of the first peak. This causes a total increase of 2m in the
weight of the path and makes the weight of first peak ≥ 3.
Theorem 2.3: An appeal to Theorem 2.1, the extra factor q2m puts two SE
steps (0,2) to (1,1) and (1,1) to (2,0). So in this case the path begins with
(m+ 1) peaks starting from (0,2) and ending at (2m+ 2, 0).

If m=4, the path begins as shown in Figure 9.
Again an appeal to Theorem 2.1, due to the factor 1

(q4;q4)m
, the length of

the plains, if any, is ≡ 0 (mod 4) between any two mountains.
The factor 1/(q; q2)m+1 generates (m+ 1) nonnegative multiples of (2i− 1),

1 ≤ i ≤ m + 1, say, β1 × 1, β2 × 3, . . . , βm+1 × (2m + 1). This is encoded by
increasing the height of ith peak by βm−i+2 by inserting NESE steps. This will
cause the ith peak to grow to height βm−i+2 + 1 ∀ 2 ≤ i ≤ m+ 1. And the first
peak which is already at height 2 will grow to height βm+1 + 2.
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Figure 9

Consider the first three peaks of Figure 9 with two plains each of length 4
in between two mountains and take β5 = 2, β4 = 0 = β3.

Figure 10

Again an appeal to Theorem 2.1, the factor (−q; q2)m generates m nonnegative
multiples of (2j− 1), 1 ≤ j ≤ m, say, γ1× 1, γ2× 3, . . . , γm× (2m− 1), where
each γj (1 ≤ j ≤ m) is 0 or 1. This is encoded by having the ith peak grow
to height γm−i+2 + βm−i+2 + 1 by inserting NE steps followed by S steps with
depth γm−i+2 and then followed by H steps with length γm−i+2 ∀ 2 ≤ i ≤ m+1.
The depth of this S step and the length of this H step cannot exceed one as
γj = 0 or 1; 1 ≤ j ≤ m. Thus the height of first peak remains unaffected. This
is illustrated in Figure 11 with γ4 = 0, γ3 = 1.

Figure 11

Theorem 2.4: This is treated in the same manner as Theorem 2.1. The only
difference is the change in condition which states the length of the plains, if
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any, is even because of the presence of the factor 1
(q2;q2)m

.

Theorem 2.5: An appeal to Theorem 2.4, the extra factor qm puts one SE step
(0,1) to (1,0). So in this case the path begins with (m + 1) peaks starting
from (0,1) and ending at (2m + 1, 0) and length of the plains, if any, is ≡ 0
(mod 2) between any two mountains. Also, the factor 1

(1−q2m+1) introduces a

nonnegative multiple of 2m+1, say βm+1×(2m+1). This is encoded by having
the first peak grow to height βm+1 + 1 in the northeast direction.
Theorem 2.6: An appeal to Theorem 2.4, the extra factor q2m puts two SE steps
(0,2) to (1,1) and (1,1) to (2,0). So in this case the path begins with (m + 1)
peaks starting from (0,2) and ending at (2m + 2, 0) and length of the plains,
if any, is ≡ 0 (mod 2) between any two mountains. Also, the factor 1

(1−q2m+1)

introduces a nonnegative multiple of 2m + 1, say βm+1 × (2m + 1). This is
encoded by having the first peak grow to height βm+1 + 2 in the northeast
direction.

3. Combinatorial interpretation using (n + t)–color overpartitions

Theorem 3.1. Let R1(µ) denote the number of n–color overpartitions of µ
such that (i) if ap is the smallest or the only part in the partition, then a ≡ p
(mod 4), (ii) a part ap with p = 1 is never overlined, (iii) the weighted difference
between any two consecutive parts is nonnegative and is ≡ 0 (mod 4). Then

∞∑
µ=0

R1(µ)qµ =

∞∑
λ=0

qλ
2

(−q; q2)λ
(q4; q4)λ(q; q2)λ

.

Example 3.2. R1(7) = 8, the relevant n–color overpartitions are: 77, 77, 73,
73, 64 + 11, 64 + 11, 51 + 22, 51 + 22.

Theorem 3.3. Let R2(µ) denote the number of n–color overpartitions of µ
such that (i) if ap is the smallest or the only part in the partition, then a ≡ p+2
(mod 4), (ii) a part ap with p = 1 is never overlined, (iii) all parts are greater
than or equal to 3 and (iv) the weighted difference between any two consecutive
parts is nonnegative and is ≡ 0 (mod 4). Then

∞∑
µ=0

R2(µ)qµ =

∞∑
λ=0

qλ
2+2λ(−q; q2)λ

(q4; q4)λ(q; q2)λ
.

Theorem 3.4. Let R3(µ) denote the number of (n+ 2)–color overpartitions of
µ such that (i) the smallest part or the only part is of the form aa+2, (ii) the
smallest part and a part ap with p = 1 are never overlined, (iii) the weighted
difference between any two consecutive parts is nonnegative and is ≡ 0 (mod 4).
Then

∞∑
µ=0

R3(µ)qµ =

∞∑
λ=0

qλ
2+2λ(−q; q2)λ

(q4; q4)λ(q; q2)λ+1
.
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Theorem 3.5. Let R4(µ) denote the number of n–color overpartitions of µ
such that (i) the parts and their subscripts have same parity, (ii) a part ap
with p = 1 is never overlined, and (v) the weighted difference between any two
consecutive parts is nonnegative and is even. Then

∞∑
µ=0

R4(µ)qµ =

∞∑
λ=0

qλ
2

(−q; q2)λ
(q2; q2)λ(q; q2)λ

.

Example 3.6. R4(7) = 13, the relevant n–color overpartitions are: 71, 73, 75,
77, 73, 75, 77, 64 + 11, 64 + 11, 62 + 11, 62 + 11, 51 + 22, 51 + 22.

Theorem 3.7. Let R5(µ) denote the number of (n+ 1)–color overpartitions of
µ such that (i) the parts and their subscripts have opposite parity, (ii) the least
part is of the form aa+1, (iii) the smallest part and a part ap with p = 1 are
never overlined and (iv) the weighted difference between any two consecutive
parts is nonnegative and is even. Then

∞∑
µ=0

R5(µ)qµ =

∞∑
λ=0

qλ
2+λ(−q; q2)λ

(q2; q2)λ(q; q2)λ+1
.

Theorem 3.8. Let R6(µ) denote the number of (n + 2)–color overpartitions
of µ such that (i) the parts and their subscripts have same parity, (ii) the least
part is of the form aa+2, (iii) the smallest part and a part ap with p = 1 are
never overlined and (iv) the weighted difference between any two consecutive
parts is nonnegative and is even. Then

∞∑
µ=0

R6(µ)qµ =

∞∑
λ=0

qλ
2+2λ(−q; q2)λ

(q2; q2)λ(q; q2)λ+1
.

To prove the above theorems, we study a more general (n+t)–color overparti-
tion function Rk(m,µ) (1 ≤ k ≤ 6) which counts the (n+t)–color overpartitions
of µ of the kind as described in Theorem 3.i (i = 1, 3, 4, 5, 7, 8) with the added
restriction that there be exactly m parts. For 1 ≤ k ≤ 6, φk(z; q) will denote
the 2–variable generating function given by

(7) φk(z; q) =

∞∑
µ=0

∞∑
m=0

Rk(m,µ)zmqµ,

where |q| < 1 and |z| < |q|−1.

3.1. Proof of Theorem 3.1

Proof. We shall prove that
∞∑
µ=0

R1(µ)qµ =

∞∑
λ=0

qλ
2

(−q; q2)λ
(q; q2)λ(q2; q2)λ

.

For this, we shall first prove the identity,

R1(m,µ) = R1(m,µ− 4m) +R1(m− 1, µ− 2m+ 1) +R1(m− 1,(8)
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µ− 4m+ 2) +R1(m,µ− 2m+ 1)−R1(m,µ− 6m+ 1).

To prove Theorem 3.1, we split the overpartitions enumerated by R1(m,µ) into
four classes:

(i) those that do not contain aa or aa as a part,
(ii) those that contain 11 as a part,
(iii) those that contain 22 as a part and
(iv) those that contain aa, (a ≥ 2) or aa, (a ≥ 3) as a part.
We now transform the overpartitions in class (i) by subtracting 4 from each

part ignoring the subscripts. Obviously, this transformation will not disturb
the inequalities between the parts and so the transformed overpartition will be
of the type enumerated by R1(m,µ− 4m).

Next we transform the overpartitions in class (ii) by deleting the part 11
and then subtracting 2 from all the remaining parts ignoring the subscripts.
Obviously, this transformation will not disturb the inequalities between the
parts and so the transformed overpartition will be of the type enumerated by
R1(m− 1, µ− 2m+ 1).

Next, we transform the overpartitions in class (iii) by deleting the part 22
and then subtracting 4 from all the remaining parts ignoring the subscripts.
The transformed overpartition will be of the type enumerated by R1(m−1, µ−
4m+ 2).

Finally, we transform the overpartitions in class (iv) by replacing aa by

(a− 1)a−1 or aa by (a− 1)a−1 as the case may be and then subtracting 2 from
all the remaining parts. This will produce an overpartition of µ− 2m+ 1 into
m parts. It is important to note here that by this transformation we get only
those overpartitions of µ − 2m + 1 into m parts which contain a part of the
form aa or aa. Therefore, the actual number of overpartitions which belong to
class (iv) is R1(m,µ− 2m+ 1)−R1(m,µ− 6m+ 1), where R1(m,µ− 6m+ 1)
is the number of overpartitions of µ− 2m+ 1 into m parts which are free from
the parts like aa or aa.

The above transformations are clearly reversible and this leads to the identity
(8).

Now substituting for R1(m,µ) from (8) into (7) and then simplifying, we
get

φ1(z; q) = φ1(zq4; q)+zqφ1(zq2; q)+zq2φ1(zq4; q)+q−1φ1(zq2; q)−q−1φ1(zq6; q)

taking

φ1(z; q) =

∞∑
λ=0

αλ(q)zλ

and then comparing the coefficients of zλ, we get

(9) αλ(q) =
q2λ−1(1 + q2λ−1)

(1− q2λ−1)(1− q4λ)
αλ−1(q).
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Iterating (9) λ–times and taking α0(q) = 1, we may easily get

(10) αλ(q) =
qλ

2

(−q; q2)λ
(q; q2)λ(q4; q4)λ

.

Thus

φ1(z; q) =

∞∑
λ=0

qλ
2

(−q; q2)λ
(q; q2)λ(q4; q4)λ

zλ.

Now
∞∑
µ=0

R1(µ)qµ =

∞∑
µ=0

( ∞∑
m=0

R1(m,µ)

)
qµ = φ1(1; q) =

∞∑
λ=0

qλ
2

(−q; q2)λ
(q; q2)λ(q4; q4)λ

.

This completes the proof of Theorem 3.1. �

3.2. Proof of Theorem 3.3

Proof. To prove Theorem 3.3, we split the overpartitions enumerated by
R2(m,µ) into four classes:

(i) those that do not contain aa−2 or a(a−2) as a part,
(ii) those that contain 31 as a part,
(iii) those that contain 42 as a part and
(iv) those that contain aa−2, (a ≥ 4) or aa−2, (a ≥ 5) as a part.
Now by performing some elementary reversible transformations, we get the

following recurrence relation

R2(m,µ) = R2(m,µ− 4m) +R2(m− 1, µ− 2m− 1) +R2(m− 1, µ− 4m)

+R2(m,µ− 2m+ 1)−R2(m,µ− 6m+ 1).

Now using (7) for k = 2 and after simplification, we get the following q–
functional equation

φ2(z; q)=φ2(zq4; q) + zq3φ2(zq2; q) + zq4φ2(zq4; q) + q−1φ2(zq2; q)− q−1φ2(zq6; q).

Now proceeding in the same manner as the previous theorem we get our result.
�

3.3. Proof of Theorem 3.4

Proof. Let S(µ) denote the number of n–color overpartitions of µ enumerated
by R1(µ) with the added restriction that the smallest part is of the form aa
and let S(m,µ) denote the number of n–color overpartitions of µ enumerated
by S(µ) into m parts. Further let

ψ3(q) =

∞∑
µ=0

S(µ)qµ,

ψ3(z; q) =

∞∑
m,µ=0

S(m,µ)zmqµ.
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Using the arguments of the proof of Theorem 3.1, we see that

S(m,µ) = R1(m− 1, µ− 2m+ 1) +
1

2

[
R1(m− 1, µ− 4m+ 2)(11)

+R1(m,µ− 2m+ 1)−R1(m,µ− 6m+ 1)
]
.

Translating (11) into a q–functional equation, we get
(12)

ψ3(z; q) = zqφ1(zq2; q) +
1

2
zq2φ1(zq4; q) +

1

2
q−1φ1(zq2; q)− 1

2
q−1φ1(zq6; q)

setting

ψ3(z; q) =

∞∑
λ=0

βλ(q)zλ

and then comparing the coefficients of zλ in (12), we get

2βλ(q) = 2q2λ−1αλ−1(q) + q4λ−2αλ−1(q) + q2λ−1αλ(q)− q6λ−1αλ(q).

Substituting the value of αλ(q) from (10) and then simplifying, we get

βλ(q) =
qλ

2

(−q; q2)λ−1
(q4; q4)λ−1(q; q2)λ

.

Thus
(13)

ψ3(z; q) =

∞∑
λ=0

q(λ+1)2(−q; q2)λz
λ+1

(q4; q4)λ(q; q2)λ+1
= zq

∞∑
λ=0

qλ
2+2λ(−q; q2)λz

λ

(q4; q4)λ(q; q2)λ+1
= zqχ(z; q),

where,

χ(z; q) =

∞∑
λ=0

qλ
2+2λ(−q; q2)λz

λ

(q4; q4)λ(q; q2)λ+1
.

Now, define T (m,µ) by

χ(z; q) =

∞∑
µ=0

∞∑
m=0

T (m,µ)zmqµ.

We see by coefficient comparison in (13) that

S(m+ 1, µ+ 1) = T (m,µ).

Now if we replace the part aa in an overpartition enumerated by S(m+1, µ+1)
by (a−1)a+1, we see that the resulting overpartition is enumerated by R3(m+
1, µ). Thus we have

T (m,µ) = R3(m+ 1, µ)

and so
∞∑
µ=0

∞∑
m=0

R3(m+ 1, µ)zmqµ = χ(z; q).
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Now

∞∑
µ=0

R3(µ)qµ =

∞∑
µ=0

( ∞∑
m=1

R3(m,µ)

)
qµ =

∞∑
µ=0

( ∞∑
m=0

R3(m+ 1, µ)

)
qµ

=

∞∑
µ=0

( ∞∑
m=0

T (m,µ)

)
qµ

= χ(1; q) = χ(q) =

∞∑
λ=0

qλ
2+2λ(−q; q2)λ

(q4; q4)λ(q; q2)λ+1
.

This completes the proof of Theorem 3.4. �

3.4. Outline of the proofs of Theorems 3.5, 3.7 and 3.8

Since the proofs of Theorems 3.5, 3.7 and 3.8 are similar to that of Theorems
3.1 and 3.4, we omit the details and give only the identities analogous to (8)
and the q–functional equations used in each case. The interested readers can
easily supply the details or obtain them from the author.

R4(m,µ) = R4(m,µ− 2m) +R4(m− 1, µ− 2m+ 1) +R4(m− 1, µ− 4m+ 2)

+R4(m,µ− 2m+ 1)−R4(m,µ− 4m+ 1).

R5(m,µ) = R4(m− 1, µ− 2m+ 1) +
1

2
R4(m− 1, µ− 4m+ 2)

+
1

2
R4(m,µ− 2m+ 1)− 1

2
R4(m,µ− 4m+ 1).

R6(m,µ) = R4(m− 1, µ− 2m+ 1) +
1

2
R4(m− 1, µ− 4m+ 2)

+
1

2
R4(m,µ− 2m+ 1)− 1

2
R4(m,µ− 4m+ 1).

φ4(z; q) = φ4(zq2; q) + zqφ4(zq2; q) + zq2φ4(zq4; q)

+ q−1φ4(zq2; q)− q−1φ4(zq4; q).

zqφ5(zq; q) = zqφ4(zq2; q) +
1

2
zq2φ4(zq4; q) +

1

2
q−1φ4(zq2; q)

− 1

2
q−1φ4(zq4; q).

zqφ6(z; q) = zqφ4(zq2; q) +
1

2
zq2φ4(zq4; q) +

1

2
q−1φ4(zq2; q)

− 1

2
q−1φ4(zq4; q).



R–R TYPE IDENTITIES, OVERPARTITIONS, GENERALIZED LATTICE PATHS 465

4. Equinumerous classes of (n + t)–color overpartitions and
generalized lattice paths

In this section, we will establish a 1 − 1 correspondence between the lat-
tice paths enumerated by Pi(µ) and the n–color overpartitions enumerated by
Ri(µ) for all 1 ≤ i ≤ 6. It is also noticeable that the peak which is immediately
proceeded by a S step and then followed by a H step at height h > 0 corre-
sponds to the overlined part in the corresponding (n + t)–color overpartition.
As the proofs are similar for all values of i, so we will discuss the case i = 1 in
detail and one can easily supply proofs of the remaining cases 2 ≤ i ≤ 6.

Theorem 4.1. For all µ ≥ 0, we have

∞∑
µ=0

P1(µ)qµ =

∞∑
µ=0

R1(µ)qµ.

Proof. We will do this by encoding each path as the sequence of the weights of
the peaks with each weight subscripted by the height of the respective peak.

Thus, if we say that Xu is the i–th peak and Yv is the (i + 1)–st one,
respectively, in Fig. 6 or Fig. 7 or Fig. 8, then

X = (2i− 1) + αm−i+1 + 2(βm + βm−1 + · · ·+ βm−i+2) + βm−i+1 + 2(γm

+ γm−1 + · · ·+ γm−i+2) + γm−i+1,

u = 1 + βm−i+1 + γm−i+1,

Y = (2i+ 1) + αm−i + 2(βm + βm−1 + · · ·+ βm−i+1) + βm−i + 2(γm + γm−1

+ · · ·+ γm−i+1) + γm−i,

v = 1 + βm−i + γm−i.

The weighted difference of these two parts is ((Yv −Xu)) = Y −X − u− v =
αm−i − αm−i+1 which is nonnegative and is ≡ 0 (mod 4).

Obviously, if (X,u) is the first peak in the generalized lattice path, then it
will correspond to the smallest part in the corresponding n–color overpartition
or to the singleton part if the n–color overpartition has only one part and in
both cases X − u = αm ≡ 0 (mod 4). Also, when height of the peak is 1, only
NESE step will occur once, so there cannot be any S step followed by H step.
This confirms that the n–color part of the form a1 cannot be overlined. To
see the reverse implication, we consider two n–color parts of an overpartition
enumerated by R1(µ), say, Cr and Ds.

Let M1 ≡ (C, r) and M2 ≡ (D, s) be the corresponding peaks in the general-
ized lattice path. The length of the plain between the two peaks is D−C−r−s
which is the weighted difference between the two parts Cr and Ds and is there-
fore nonnegative and is ≡ 0 (mod 4). Also, there cannot be a valley above
height 0. This can be proved by contradiction.

Suppose, there is a valley V of height h (h > 0) between the peaks M1 and
M2. In this case there is a descent of r−h from M1 to V and an ascent of s−h
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Figure 12

from V to M2. This implies

D = C + (r − h) + (s− h)⇒ D − C − r − s = −2h.

But since the weighted difference is nonnegative, therefore h=0.
This completes the proof of Theorem 4.1. �

To illustrate the constructed bijections we consider generalized lattice paths
enumerated by P1(7) and the corresponding n–color overpartitions enumerated
by R1(7) in the following Table 1.

Table 1

n–color overpartitions gen. lattice paths n–color overpartitions gen. lattice paths

77 64 + 11

77 64 + 11

73 51 + 22

73 51 + 22
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