References
- Agnelli A, Ascher J, Corti G, Ceccherini MT, Nanniieri P, Pietramellra G (2004) Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol Biochem 36: 859-868 https://doi.org/10.1016/j.soilbio.2004.02.004
- Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Current opinion in Biotechnology 18(3): 237-245 https://doi.org/10.1016/j.copbio.2007.04.004
- Cai YJ, Chapman SJ, Buswell JA, Chang ST (1999) Production and distribution of endoglucanase, cellobiohydrolase, and beta-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl Environ Microbiol 65: 553-559
- Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42: D490-495 https://doi.org/10.1093/nar/gkt1178
- Jang MY, Park HR, Lee CG, Choo GC, Cho HS, Park SB, Oh KC, Kim BG (2017) Isolation and biochemical characterization of acid tolerance xylanase producing Bacteria, Bacillus sp. GJY from city park soil. J Appl Biol Chem 60(1): 79-86 https://doi.org/10.3839/jabc.2017.014
- Khandeparker R, Verma P, Deobagkar D (2011) A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: gene cloning and sequencing. N Biotechnol 28: 814-821 https://doi.org/10.1016/j.nbt.2011.08.001
- Kim YK, Lee SC, Cho YY, Oh HJ (2012) Isolation cellulolytic Bacillus subtilis strains from agricultural environments. ISRN Microbiol Article ID 650563: 9
- Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews 1999; 23: 411-456 https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
- Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Bioechnol 35: 377-391 https://doi.org/10.1007/s10295-008-0327-8
- Lee CK, Jang MY, Park HR, Choo GC, Cho HS, Park SB, Oh KC, An JB, Kim BG (2016) Cloning and characterization of xylanase in cellulolytic Bacillus sp. strain JMY1 isolated from forest soil. App Biol Chem 59(3): 415-423 https://doi.org/10.1007/s13765-016-0179-2
- Lee YJ, Kim BK, Lee BH, Jo KI, Lee NK, Chung CH, Lee JW (2008) Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource technology 99(2): 378-386 https://doi.org/10.1016/j.biortech.2006.12.013
- Li XH, Yang HJ, Roy B, Wang D, Yue WF, Jiang LJ, Miao YG (2009) The most stirring technology in future: Cellulase enzyme and biomass utilization. African Journal of Biotechnology 8(11)
- Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and molecular biology reviews 66(3): 506-577 https://doi.org/10.1128/MMBR.66.3.506-577.2002
- Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar, Analytical Chemistry, 31(3): 426-428 https://doi.org/10.1021/ac60147a030
- Mosolova TP, Kalyuzhnyi SV, Varfolomeyev SD, Velikodvorskaya GA (1993) Purification and properties of Clostridium thermocellum endoglucanase 5 produced in Escherichia coli. Applied biochemistry and biotechnology 42(1): 9-18 https://doi.org/10.1007/BF02788898
-
Murashima K, Nishimura T, Nakamura Y, Koga J, Moriya T, Sumida N, Kono T (2002) Purification and characterization of new endo-1, 4-
$\beta$ -Dglucanases from Rhizopus oryzae. Enzyme and Microbial Technology 30(3): 319-326 https://doi.org/10.1016/S0141-0229(01)00513-0 - Nikaus PA, Wardle DA, Tate KR (2006) Effects of plant species diversity and composion on nitrogen cycling and the trace gas balance of soils, Plant Soil 282: 83-98 https://doi.org/10.1007/s11104-005-5230-8
- Oh SH, Kim MS, So S, Suj HJ (2003) Studies on the Production of cellulase by Trichoderma sp. SO-571 and the Enzyme Treatment for Cellulosic Fabrics. J. Microbiol. Biotechnol 31(3): 42-45
- Robson LM, Chambliss GH (1989) Cellulases of bacterial origin. Enzyme and Microbial Technology, 11(10): 626-644 https://doi.org/10.1016/0141-0229(89)90001-X
- Saito K, Kawamura Y, Oda Y (2003) Role of the pectinolytic enzyme in the lactic acid fermentation of potato pulp by Rhizopus oryzae. Journal of industrial microbiology & biotechnology 30(7): 440-444 https://doi.org/10.1007/s10295-003-0071-z
- Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiology Reviews 2003; 27: 3-16
- Sohail M, Siddiqi R, Ahmad A, Khan SA (2009) Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnol 25(6): 437-41 https://doi.org/10.1016/j.nbt.2009.02.002
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725-2729 https://doi.org/10.1093/molbev/mst197
- Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, Kuipers OP (2004) Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretion. Microbiology and Molecular Biology Reviews 68(2): 207-233 https://doi.org/10.1128/MMBR.68.2.207-233.2004
- Whitaker JR (1990) Cellulase production and application. Food Biotechnol 4: 669-697 https://doi.org/10.1080/08905439009549782
- Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Current opinion in microbiology 14(3): 259-263 https://doi.org/10.1016/j.mib.2011.04.004
- Yang JK, Zhang JJ, Yu HY, Cheng JW, Miao LH (2014) Community composition and cellulase activity of cellulolytic bacteria from forest soils planted broad-leaved deciduous and evergreen trees. Appl Microbiol Biotechnol 98: 1449-1458 https://doi.org/10.1007/s00253-013-5130-4
- Zang XZ, Zhang YHP (2011) Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microbial Biotechnology 4: 98-105 https://doi.org/10.1111/j.1751-7915.2010.00230.x