DOI QR코드

DOI QR Code

영지버섯추출물 및 에르고스테롤의 냉감 수용체 TRPM8 (Transient Receptor Potential Cation Channel Melastatin Subtype 8) 발현 유도 효과

Inductive Effects of the Cold Receptor TRPM8 Expression in Ganoderma lucidum Extracts and Ergosterol

  • 유화선 ((주)코씨드바이오팜 바이오융합연구소) ;
  • 정지연 ((주)코씨드바이오팜 바이오융합연구소) ;
  • 전원옥 ((주)뉴메디온) ;
  • 이춘몽 ((주)코리아나화장품) ;
  • 이정노 ((주)코씨드바이오팜 바이오융합연구소) ;
  • 박성민 ((주)코씨드바이오팜 바이오융합연구소)
  • Ryu, Hwa Sun (Bio Convergence R&D Center, Coseedbiopharm Corporation) ;
  • Jeong, JiYeon (Bio Convergence R&D Center, Coseedbiopharm Corporation) ;
  • Jeon, Weon-Ok (NewMedion) ;
  • Lee, Chun Mong (Future Science Research Center, Coreana Cosmetics Corporation) ;
  • Lee, Jung-No (Bio Convergence R&D Center, Coseedbiopharm Corporation) ;
  • Park, Sung-Min (Bio Convergence R&D Center, Coseedbiopharm Corporation)
  • 투고 : 2018.01.22
  • 심사 : 2018.03.06
  • 발행 : 2018.03.31

초록

UV 뿐 아니라 가시광선, 적외선에 의해 발생된 열로 인해 피부 온도 상승, MMP-1의 증가에 따른 피부 노화가 진행된다. 따라서 열에 의한 노화에서 피부 온도 조절은 노화 억제에 중요한 핵심 요소이다. 일시적인 수용체 전위 통로인 TRPM8은 멘솔 수용체(CMR1)로써 $25^{\circ}C$ 이하의 온도에서 활성화되고 시원한 감각을 발생시키는 냉 수용체로 보고되어 있다. TRPM8 조절을 통해 시원한 감각과 피부 온도를 조절하는 연구가 활발히 진행되고 있다. 본 연구에서는 천연물인 영지버섯을 이용하여 냉 수용체인 TRPM8 발현에 어떠한 영향을 주는지 확인하였다. 영지버섯추출물 및 용매 분획물의 TRPM8 발현에 대한 영향을 측정한 결과, 영지버섯추출물, n-hexane 분획물 및 water 분획물에서 농도의존적으로 TRPM8 발현이 증가함을 확인하였다. Hex 분획물에서 유효성분을 찾고자 크로마토그래피를 실시하여 1개의 화합물을 분리하였으며 $^1H$$^{13}C$ NMR spectrum 분석을 통하여 화학구조를 동정하였다. 분리된 화합물은 에르고스테롤로 TRPM8 발현 증가에 효과가 있음을 확인하였다. 결과를 토대로, 영지버섯추출물 및 에르고스테롤은 화장품 분야에서 새로운 쿨링 소재로서 개발가능성이 있다고 사료된다.

Skin-aging is accelerated by the increased expression of MMP-1 caused by the increased skin temperature induced by IR/visible light as well as UV. Thus, the control of skin temperature is important to inhibit heat-induced aging. Many studies have been conducted to lower the skin temperature through the controlling transient receptor potential melastatin 8 channel (TRPM8), which is known as the cold and menthol receptor 1 (CMR1) and is activated at temperature below $25^{\circ}C$. In this study, we first investigated the effect of Ganoderma lucidum extract (GLE) on the TRPM8 expression. Results showed that GLE, hexane (Hex) fractions and water fractions increased the TRPM8 expression in a dose dependent manner. Active compound in Hex fractions were separated by chromatography and analyzed by $^1H$ and $^{13}C$ NMR spectroscopy. The isolated compounds were identified as ergosterol and it also significantly increased the TRPM8 expression. Taken together, these results strongly suggest that G. lucidum extract and ergosterol have the potential as a new cooling ingredient in the cosmetics.

키워드

참고문헌

  1. B. A. Gilchrest, Skin aging aging and photoaging:an overview, K. Am. Acad. Dermatol., 21(3), 610 (1989). https://doi.org/10.1016/S0190-9622(89)70227-9
  2. M. A. Farage, K. W. Miller, P. Elsner, and H. I. Maibach, Intrinsic and extrinsic factors in skin ageing: a review, Int. J. Cosmetic Sci., 30(2), 87 (2008). https://doi.org/10.1111/j.1468-2494.2007.00415.x
  3. H. Lee, Inhibitory effects of Hesperidin on the ultraviolet B-induced photo-aging, Kor. J. Aesthet. Cosmetol., 13(5), 631 (2015).
  4. G. J. Fisher, S. Kang, J. Varani, A. Bata-Csorgo, Y, Wan, S. Datta, and J. J. Voorhees, Mechanisms of photoaging and chronological aging, Arch. Dermatol., 138(11), 1462 (2002).
  5. G. J. Fisher, Z. Q. Wang, S. C. Datta, J. Varani, S. Kang, and J. J. Voorhees, Pathophysiology of premature skin aging induced by ultraviolet light, N. Engl. J. Med., 337(20), 1419 (1997). https://doi.org/10.1056/NEJM199711133372003
  6. C. H. Park, M. J. Lee, J. Ahn, S. Kim, H. H. Kim, K. H. Kim, H. C. Eun, and J. H. Chung, Heat shock-induced matrix metalloproteinase (MMP)-1 and MMP-3 are mediated through erk and jnk activation and via an autocrine interleukin-6 loop, J. Invest. Dermatol., 123(6), 1012 (2004). https://doi.org/10.1111/j.0022-202X.2004.23487.x
  7. A. V. Benedetto, The environment and skin aging, Clin. Dermatol., 16(1), 129 (1998). https://doi.org/10.1016/S0738-081X(97)00193-4
  8. P. Shahrad and R. Marks, The wages of warmth: changes in erythema ab igne, Br. J. Dermatol., 97(2), 179 (1977). https://doi.org/10.1111/j.1365-2133.1977.tb15063.x
  9. W. C. Johnson and T. Butterworth, Erythema ab lgne elastosis, Arch. Dermatol., 104(2), 128 (1971). https://doi.org/10.1001/archderm.1971.04000200016004
  10. Y. M. Lee, S. M. Kang, and J. H. Chung, The role of TRPV1 channel in aged human skin, J. Dermatol. Sci., 65(2), 81 (2012). https://doi.org/10.1016/j.jdermsci.2011.11.003
  11. N. Kato, T. Kobayashi, and H. Honda, Screening of stress enhancer based on analysis of gene expression profiles: enhancement of hyperthermia-induced tumor necrosis by an MMP-3 inhibitor, Cancer. Sci., 94(7), 644 (2003). https://doi.org/10.1111/j.1349-7006.2003.tb01497.x
  12. A. Gorostizaga, L. Brion, P. Maloberti, F. C. Maciel, E. J. Podesta, and C. Paz, Heat shock triggers MAPK activation and MKP-1 induction in leydig testicular cells, Biochem. Biophys. Res. Commun., 327(1), 23 (2005). https://doi.org/10.1016/j.bbrc.2004.11.129
  13. S. W. Park, Transient receptor potential (TRP) channels, Korean J. Otorhinolaryngol.-Head Neck Surg., 53(2), 65 (2010). https://doi.org/10.3342/kjorl-hns.2010.53.2.65
  14. K. Venkatachalam and C. Montell, TRP channels, Annu. Rev. Biochem., 76, 387 (2007). https://doi.org/10.1146/annurev.biochem.75.103004.142819
  15. M. J. Caterina, Transient receptor potential ion channels as participants in thermosensation and thermoregulation, Am. J. Physiol. Rejul. Integr. Comp. Physiol., 292(1), R64 (2007). https://doi.org/10.1152/ajpregu.00446.2006
  16. D. A. Andersson, H. W. Chase, and S. Bevan, TRPM8 activation by menthol, idilin, and cold is differentially modulated by intracellular pH, J. Neurosci., 24(23), 5364 (2004). https://doi.org/10.1523/JNEUROSCI.0890-04.2004
  17. J. D. Levine and N. Alessandri-Haber, TRP channels: targets for the relief of pain, Biochim. Biophys. Acta, 1772(8), 989 (2007). https://doi.org/10.1016/j.bbadis.2007.01.008
  18. T. Foulkes and J. N. Wood, Mechanisms of cold pain, Channels (Austin), 1(3), 154 (2007). https://doi.org/10.4161/chan.4692
  19. D. D. Mckemy, How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation, Mol. Pain., 1, 16 (2005).
  20. S. J. Jung, The role of transient receptor potentail channel in pain, Hanyang Med. Rev., 31(2), 116 (2011). https://doi.org/10.7599/hmr.2011.31.2.116
  21. D. M. Bautista, J. Siemens, J. M. Glazer, P. R. Tsuruda, A. I. Basbaum, C. L. Stucky, S. E. Jordt, and D. Julius, The menthol receptor TRPM8 is the principal detector of environmental cold, Nature, 448(7150), 204 (2007). https://doi.org/10.1038/nature05910
  22. A. Dhaka, A. N. Murray, J. Mathur, T. J. Earley, and M. J. Petrus, A. Patapoutian, TRPM8 is required for cold sensation in mice, Neuron, 54(3), 371 (2007). https://doi.org/10.1016/j.neuron.2007.02.024
  23. G. M. Story, A. M. Peier, A. J. Reeve, S. R. Eid, J. Mosbacher, T. R. Hricik, T. J. Earley, A. C. Hergarden, D. A. Andersson, S. W. Hwang, P. Mclntyre, T. Jegla, S. Bevan, and A. Patapoutian, ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures, cell, 112(6), 819 (2003). https://doi.org/10.1016/S0092-8674(03)00158-2
  24. M. Tominaga and M. J. Caterina, Thermosensation and pain, J. Neurobiol., 61(1), 3 (2004). https://doi.org/10.1002/neu.20079
  25. S. H. Kwon, C. N. Kim, C. Y. Kim, S. T. Kwon, K. M. Park, and S. Hwangbo, Antiturmor activities of protein-bound polysaccharide extracted from mycelia of mushroom, Korean J. Food&Nutr., 16(1), 15 (2003).
  26. I. Rubinstein, L. J. Goad, A. D. H. Clague, and L. J. Mulheim, The 220 MHz NMR spectrum of phytosterols, Phytochemistry, 15(1), 195 (1976). https://doi.org/10.1016/S0031-9422(00)89083-4