Figure 1. HPLC-DAD chromatograms of the (A) 50% ethanol extract (2.00 μg injected in 20 μL) and (B) ethyl acetate fraction (2.00 μg injected in 20 μL) of PMR acquired at 250-400 nm. (C) the ESI-MS spectrum of isolated compound (1) from the ethyl acetate fraction of PMR. (D) the MS2-spectrum of the [M+H]+ ions at m/z 407.13.
Figure 2. TLC chromatograms (UV-254 (A, D), 365 nm (B, E) and NP-PEG reagents; UV-365 nm (C, F)). (A-C) the eluent system was ethyl acetate: chloroform: formic acid: water = 8 : 1 : 1 : 1 (v/v), (D-F) the eluent was n-hexane : ethyl acetate : acetic acid = 21 : 14 : 5 (v/v). ① emodin ② 50% EtOH extract ③ EtOAc fraction ④ THSG ⑤ gallic acid.
Figure 4. Inhibition of rose bengal sensitized photohemolysis by the 50% ethanol extract and ethyl acetate fraction of PMR and that of THSG and (+)-α-tocopherol. (a-c) Time-dependent cell viability of erythrocyte treated different concentration of the samples; 3.125, 6.25 and 12.5 μg/mL, respectively.
Figure 3. (A) Free radical scavenging and (B) ROS scavenging activities of the 50% ethanol extract and ethyl acetate fraction of PMR and that of THSG, (+)-α-tocopherol and L-ascorbic acid. the FSC50 and OSC50 of the different samples were determined using DPPH assay and luminol-dependent chemiluminescence assay in the Fe3+-EDTA/H2O2 system, respectively. values are presented as mean ± SD (n = 3). a-d/a’-b’, different letters on the top of the bars denote significant differences (p < 0.05).
Figure 5. Photographs of the antibacterial test results of the 50% ethanol extract, and ethyl acetate fraction of PMR and that of THSG and methyl using the disk diffusion method against (a) S. aureus, (b) E. coli, (c) P. aeruginosa and (d) C. albicans.
Table 1. Weight Yields, Total Phenolic (TP) Contents and 2, 3, 5, 4'-Tetrahydroxystilbene 2-O-β-D-lucoside (THSG) Contents of the Extract and Fraction from PMR
Table 2. Cytoprotective Effects of the 50% Ethanol Extract and Ethyl Acetate Fraction of PMR and that of THSG and (+)-α-Tocopherol against 1O2-Induced Photohemolysis in Erythrocytes
Table 3. Values of MIC and MBC/MFCof the 50% Ethanol Extract, and Ethyl Acetate Fraction of PMR and that of THSG and Methyl Paraben by Broth Microdilution Assay (n = 3)
참고문헌
- B. C. Dickinson and C. J. Chang, Chemistry and biology of reactive oxygen species in signaling or stress responses, Nat. Chem. Biol., 7(8), 504 (2011). https://doi.org/10.1038/nchembio.607
- J. Zhang, X. Wang, V. Vikash, Q. Ye, D. Wu, Y. Liu, and W. Dong, ROS and ROS-Mediated cellular signaling, Oxid. Med. Cell Longev., 4350965 (2016).
- B. D'Autreaux and M. B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nat. Rev. Mol. Cell Biol., 8(10), 813 (2007). https://doi.org/10.1038/nrm2256
- C. K. Chow, Antioxidant nutrients and environmental health: introduction, Toxicology, 180(1), 1 (2002). https://doi.org/10.1016/S0300-483X(02)00377-3
- K. J. Trouba, H. K. Hamadeh, R. P. Amin, and D. R. Germolec, Oxidative stress and its role in skin disease, Antioxid. Redox Signal., 4(4), 665 (2002). https://doi.org/10.1089/15230860260220175
- V. T. Natarajan, P. Ganju, A. Ramkumar, R. Grover, and R. S. Gokhale, Multifaceted pathways protect human skin from UV radiation, Nat. Chem. Biol., 10(7), 542 (2014). https://doi.org/10.1038/nchembio.1548
- Z. Sun, S. Y. Park, E. Hwang, M. Zhang, S. A. Seo, P. Lin, and T. H. Yi, Thymus vulgaris alleviates UVB irradiation induced skin damage via inhibition of MAPK/AP-1 and activation of Nrf2-ARE antioxidant system, J. Cell Mol. Med., 21(2), 336 (2017). https://doi.org/10.1111/jcmm.12968
- D. R. Bickers and M. Athar, Oxidative stress in the pathogenesis of skin disease, J. Invest. Dermatol., 126(12), 2565 (2006). https://doi.org/10.1038/sj.jid.5700340
- Y. Belkaid and S. Tamoutounour, The influence of skin microorganisms on cutaneous immunity, Nat. Rev. Immunol., 16(6), 353 (2016). https://doi.org/10.1038/nri.2016.48
- H. S. Shin, Y. J. Lee, J. W. Kim, B. R. Song, S. L. Lee, and S. N. Park, Evaluation of antioxidant, cytoprotective and antimicrobial activities of the extract and fractions obtained from young shoots of Nypa fruticans Wurmb, Kor. J. Pharmacogn., 49(2), 155 (2018).
- M. Al-Fatimi, M. Wurster, G. Schroder, and U. Lindequist, Antioxidant, antimicrobial and cytotoxic activities of selected medicinal plants from Yemen, J. Ethnopharmacol., 111(3), 657 (2007). https://doi.org/10.1016/j.jep.2007.01.018
- C. L. Dicastillo, F. Bustos, X. Valenzuela, G. Lopez-Carballo, J. M. Vilarino, and M. J. Galotto, Chilean berry Ugni molinae Turcz. fruit and leaves extracts with interesting antioxidant, antimicrobial and tyrosinase inhibitory properties, Food Res. Int., 102, 119 (2017). https://doi.org/10.1016/j.foodres.2017.09.073
- J. Dai and R. J. Mumper, Plant phenolics: extraction, analysis and their antioxidant and anticancer properties, Molecules, 15(10), 7313 (2010). https://doi.org/10.3390/molecules15107313
- Y. Cai, Q. Luo, M. Sun, and H. Corke, Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer, Life Sci., 74(17), 2157 (2004). https://doi.org/10.1016/j.lfs.2003.09.047
- L. Lv, Y. Cheng, T. Zheng, X. Li, and R. Zhai, Purification, antioxidant activity and antiglycation of polysaccharides from Polygonum multiflorum Thunb, Carbohydr. Polym., 99, 765 (2014). https://doi.org/10.1016/j.carbpol.2013.09.007
- Z. W. Zhu, J. Li, X. M. Gao, E. Amponsem, L. Y. Kang, L. M. Hu, B. L. Zhang, and Y. X. Chang, Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in Radix polygoni multiflori by LC-MS/MS, J. Pharm. Biomed. Anal., 62, 162 (2012). https://doi.org/10.1016/j.jpba.2011.11.002
- L. Lin, B. Ni, H. Lin, M. Zhang, X. Li, X. Yin, C. Qu, and J. Ni, Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb: a review, J. Ethnopharmacol., 159, 158 (2015). https://doi.org/10.1016/j.jep.2014.11.009
- E. S. S. Abdel-Hameed, Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples, Food Chem., 114(4), 1271 (2009). https://doi.org/10.1016/j.foodchem.2008.11.005
- J. S. Seong, S. H. Xuan, S. H. Park, K. S. Lee, Y. M. Park, and S. N. Park, Antioxidative and antiaging activities and component analysis of Lespedeza cuneata G. Don extracts fermented with Lactobacillus pentosus, J. Microbiol. Biotechnol., 27(11), 1961 (2017). https://doi.org/10.4014/jmb.1706.06028
- S. N. Park, M. J. Kim, J. H. Ha, N. H. Lee, J. Park, J. Lee, D. Kim, and C. Yoon, Protective effects of TES trioleate, an inhibitor of phospholipase A2, on reactive oxygen species and UVA-induced cell damage, J. Photochem. Photobiol. B, 164, 30 (2016). https://doi.org/10.1016/j.jphotobiol.2016.09.014
- T. Yi, K. S. Y. Leung, G. H. Lu, H. Zhang, and K. Chan, Identification and determination of the major constituents in traditional Chinese medicinal plant Polygonum multiflorum thunb by HPLC coupled with PAD and ESI/MS, Phytochemical. Analysis, 18(3), 181 (2007). https://doi.org/10.1002/pca.963
- V. Jerkovic, F. Nguyen, S. Nizet, and S. Collin, Combinatorial synthesis, reversed-phase and normal-phase high-performance liquid chromatography elution data and liquid chromatography/positive atmospheric pressure chemical ionization tandem mass spectra of methoxylated and glycosylated resveratrol analogues, Rapid Commun. Mass Spectrom., 21(15), 2456 (2007). https://doi.org/10.1002/rcm.3116
- J. M. Gutteridge, L. Maidt, and L. Poyer, Superoxide dismutase and fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II), Biochem. J., 269(1), 169 (1990). https://doi.org/10.1042/bj2690169
- R. L. Chen, C. H. Lin, C. Y. Chung, and T. J. Cheng, Determination of tannin in green tea infusion by flow-injection analysis based on quenching the fluorescence of 3-aminophthalate, J. Agric. Food Chem., 53(22), 8443 (2005). https://doi.org/10.1021/jf051077f
- M. C. DeRosa and R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 233-234, 351 (2002). https://doi.org/10.1016/S0010-8545(02)00034-6
- C. Papuc, G. V. Goran, C. N. Predescu, and V. Nicorescu, Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: a review, Compr. Rev. Food Sci. Food Saf., 16(1), 96 (2017). https://doi.org/10.1111/1541-4337.12241
- T. G. Nam, B. H. Lee, H. K. Choi, A. R. Mansur, S. G. Lee, and D. O. Kim, Rhus verniciflua Stokes extract and its flavonoids protect PC-12 cells against H2O2-induced cytotoxicity, J. Microbiol. Biotechnol., 27(6), 1090 (2017). https://doi.org/10.4014/jmb.1612.12018
- K. A. Youdim, B. Shukitt-Hale, S. MacKinnon, W. Kalt, and J. A. Joseph, Polyphenolics enhance red blood cell resistance to oxidative stress: in vitro and in vivo, Biochim. Biophys. Acta, 1523(1), 117 (2000). https://doi.org/10.1016/S0304-4165(00)00109-4
- A. S. Magalhaes, B. M. Silva, J. A. Pereira, P. B. Andrade, P. Valentao, and M. Carvalho, Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes, Food Chem. Toxicol., 47(6), 1372 (2009). https://doi.org/10.1016/j.fct.2009.03.017
- K. Hirakawa, H. Umemoto, R. Kikuchi, H. Yamaguchi, Y. Nishimura, T. Arai, S. Okazaki, and H. Segawa, Determination of singlet oxygen and electron transfer mediated mechanisms of photosensitized protein damage by phosphorus(V)porphyrins, Chem. Res. Toxicol., 28(2), 262 (2015). https://doi.org/10.1021/tx500492w
- Y. Fu, Y. Zu, L. Chen, X. Shi, Z. Wang, S. Sun, and T. Efferth, Antimicrobial activity of clove and rosemary essential oils alone and in combination, Phytother. Res., 21(10), 989 (2007). https://doi.org/10.1002/ptr.2179
- M. M. Cowan, Plant products as antimicrobial agents, Clin. Microbiol. Rev., 12(4), 564 (1999). https://doi.org/10.1128/CMR.12.4.564
- S. Basu, A. Ghosh, and B. Hazra, Evaluation of the antibacterial activity of Ventilago madraspatana Gaertn., Rubia cordifolia Linn., and Lantana camara Linn.: isolation of emodin and physcion as active antibacterial agents, Phytother. Res., 19(10), 888 (2005). https://doi.org/10.1002/ptr.1752
- W. J. Kong, J. B. Wang, C. Jin, Y. L. Zhao, C. M. Dai, X. H. Xiao, and Z. L. Li, Effect of emodin on Candida albicans growth investigated by microcalorimetry combined with chemometric analysis, Appl. Microbiol. Biotechnol., 83(6), 1183 (2009). https://doi.org/10.1007/s00253-009-2054-0
- X. Ding, B. Yin, L. Qian, Z. Zeng, Z. Yang, H. Li, Y. Lu, and S. Zhou, Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm, J. Med. Microbiol., 60(12), 1827 (2011). https://doi.org/10.1099/jmm.0.024166-0
- A. Borges, C. Ferreira, M. J. Saavedra, and M. Simoes, Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria, Microb. Drug Resist., 19(4), 256 (2013). https://doi.org/10.1089/mdr.2012.0244