DOI QR코드

DOI QR Code

Protective effect of lycopene against cytokine-induced β-cell apoptosis in INS-1 cells

라이코펜이 사이토카인에 의해 유도된 베타세포 사멸에 미치는 효과 및 기전 연구

  • Kim, Kyong (Department of Food and Nutrition, Eulji University) ;
  • Jang, Se-Eun (Department of Food and Nutrition, Eulji University) ;
  • Bae, Gong Deuk (Lee Gil Ya Cancer and Diabetes Institute, Department of Molecular Medicine, Gachon University) ;
  • Jun, Hee-Sook (Lee Gil Ya Cancer and Diabetes Institute, Department of Molecular Medicine, Gachon University) ;
  • Oh, Yoon Sin (Department of Food and Nutrition, Eulji University)
  • 김경 (을지대학교 식품영양학과) ;
  • 장세은 (을지대학교 식품영양학과) ;
  • 배공득 (가천대학교 의과대학 분자의학 전공) ;
  • 전희숙 (가천대학교 의과대학 분자의학 전공) ;
  • 오윤신 (을지대학교 식품영양학과)
  • Received : 2018.08.29
  • Accepted : 2018.11.20
  • Published : 2018.12.31

Abstract

Purpose: Lycopene, a carotenoid with anti-oxidant properties, occurs naturally in tomatoes and pink grapefruit. Although the beneficial effects of lycopene on various disorders have been established, little attention has been paid to the possible anti-diabetic effects of lycopene focusing on ${\beta}$-cells. Therefore, this study investigated the potential of lycopene to protect ${\beta}$-cells against apoptosis induced by a cytokine mixture. Methods: For toxicity experiments, the cells were treated with 0.1 ~ 10 nM of lycopene, and the cell viability in INS-1 cells (a rat ${\beta}$-cell line) was measured using a MTT assay. To induce cytokine toxicity, the cells were treated with a cytokine mixture (20 ng/mL of $TNF{\alpha}$ + 20 ng/mL of IL-$1{\beta}$) for 24 h, and the effects of lycopene (0.1 nM) on the cytokine toxicity were measured using the MTT assay. The expression levels of the apoptotic proteins were analyzed by Western blotting, and the level of intracellular reactive oxidative stress (ROS) was monitored using a DCFDA fluorescent probe. The intracellular ATP levels were determined using a luminescence kit, and mRNA expression of the genes coding for anti-oxidative stress response and mitochondrial function were analyzed by quantitative reverse-transcriptase PCR. Results: Exposure of INS-1 cells to 0.1 nM of lycopene increased the cell viability significantly, and protected the cells from cytokine-induced death. Lycopene upregulated the mRNA and protein expression of B-cell lymphoma-2 (Bcl-2) and reduced the expression of the Bcl-2 associated X (Bax) protein. Lycopene inhibited apoptotic signaling via a reduction of the ROS, and this effect correlated with the upregulation of anti-oxidative stress response genes, such as GCLC, NQO1, and HO-1. Lycopene increased the mRNA expression of mitochondrial function-related genes and increased the cellular ATP level. Conclusion: These results suggest that lycopene reduces the level of oxidative stress and improves the mitochondrial function, contributing to the prevention of cytokine-induced ${\beta}$-cell apoptosis. Therefore, lycopene could potentially serve as a preventive and therapeutic agent for the treatment of type 2 diabetes.

본 연구는 베타세포에서 라이코펜의 항사멸 효과와 그 기전에 대해 조사하기 위해 실시하였다. 라이코펜에 의한 베타세포독성을 조사하기 위해 다양한 농도 (0.1, 1, 10 nM)로 처리하였을 경우, 저농도에서 세포독성이 나타나지 않음을 관찰하였다. 선택한 농도를 사이토카인 혼합물과 함께 처리하였을 경우, 세포 생존율이 증가하는 것을 관찰하였고, 세포사멸 유도 단백질인 Bax의 발현양은 감소하고, 세포사멸억제 단백질인 Bcl-2 발현양은 증가하는 것을 관찰하였다. 또한 사이토카인 혼합물에서 증가하였던 세포내 산화스트레스가 라이코펜과 함께 처리하였을 경우 감소되는 것을 관찰하였고 이러한 효과는 항산화 유전자인 GCLC, NQO1, HO-1의 발현양이 증가함으로서 일어난 현상임을 알 수 있었다. 라이코펜은 미토콘드리아의 생성 및 기능과 관련된 유전자의 발현을 증가시키고 사이토카인 혼합물에 의해 감소되었던 세포내 ATP 생성량을 증가시켰다. 이러한 결과는 라이코펜의 항산화효과와 미토콘드리아 기능 개선 효과가 사이토카인에 의한 베타세포 사멸을 억제하는 기전 중의 하나로 작용할 수 있음을 의미한다. 향후 라이코펜이 베타세포를 타겟으로 하는 제 2형 당뇨 치료의 기능성 소재로 개발될 가능성이 있음을 시사하는 바이다.

Keywords

References

  1. Rhodes CJ. Type 2 diabetes-a matter of beta-cell life and death? Science 2005; 307(5708): 380-384. https://doi.org/10.1126/science.1104345
  2. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010; 87(1): 4-14. https://doi.org/10.1016/j.diabres.2009.10.007
  3. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006; 444(7121): 840-846. https://doi.org/10.1038/nature05482
  4. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 1999; 48(1): 1-9. https://doi.org/10.2337/diabetes.48.1.1
  5. Tiedge M, Lortz S, Drinkgern J, Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 1997; 46(11): 1733-1742. https://doi.org/10.2337/diab.46.11.1733
  6. Gorogawa S, Kajimoto Y, Umayahara Y, Kaneto H, Watada H, Kuroda A, Kawamori D, Yasuda T, Matsuhisa M, Yamasaki Y, Hori M. Probucol preserves pancreatic beta-cell function through reduction of oxidative stress in type 2 diabetes. Diabetes Res Clin Pract 2002; 57(1): 1-10. https://doi.org/10.1016/S0168-8227(02)00005-0
  7. Robertson RP, Harmon JS. Pancreatic islet beta-cell and oxidative stress: the importance of glutathione peroxidase. FEBS Lett 2007; 581(19): 3743-3748. https://doi.org/10.1016/j.febslet.2007.03.087
  8. Stahl W, Sies H. Lycopene: a biologically important carotenoid for humans? Arch Biochem Biophys 1996; 336(1): 1-9. https://doi.org/10.1006/abbi.1996.0525
  9. Ali MM, Agha FG. Amelioration of streptozotocin-induced diabetes mellitus, oxidative stress and dyslipidemia in rats by tomato extract lycopene. Scand J Clin Lab Invest 2009; 69(3): 371-379. https://doi.org/10.1080/00365510802658473
  10. Wang L, Liu S, Manson JE, Gaziano JM, Buring JE, Sesso HD. The consumption of lycopene and tomato-based food products is not associated with the risk of type 2 diabetes in women. J Nutr 2006; 136(3): 620-625. https://doi.org/10.1093/jn/136.3.620
  11. Oh YS, Lee YJ, Park EY, Jun HS. Interleukin-6 treatment induces beta-cell apoptosis via STAT-3-mediated nitric oxide production. Diabetes Metab Res Rev 2011; 27(8): 813-819. https://doi.org/10.1002/dmrr.1233
  12. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1-2): 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  13. Antonsson B, Martinou JC. The Bcl-2 protein family. Exp Cell Res 2000; 256(1): 50-57. https://doi.org/10.1006/excr.2000.4839
  14. Jürgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci U S A 1998; 95(9): 4997-5002. https://doi.org/10.1073/pnas.95.9.4997
  15. Padgett LE, Broniowska KA, Hansen PA, Corbett JA, Tse HM. The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann N Y Acad Sci 2013; 1281(1): 16-35. https://doi.org/10.1111/j.1749-6632.2012.06826.x
  16. Cho YM, Park KS, Lee HK. Genetic factors related to mitochondrial function and risk of diabetes mellitus. Diabetes Res Clin Pract 2007; 77(3 Suppl 1): S172-S177. https://doi.org/10.1016/j.diabres.2007.01.052
  17. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005; 307(5708): 384-387. https://doi.org/10.1126/science.1104343
  18. Kim EK, Kwon KB, Han MJ, Song MY, Lee JH, Lv N, Choi KB, Ryu DG, Kim KS, Park JW, Park BH. Inhibitory effect of Artemisia capillaris extract on cytokine-induced nitric oxide formation and cytotoxicity of RINm5F cells. Int J Mol Med 2007; 19(3): 535-540.
  19. Mandrup-Poulsen T. Apoptotic signal transduction pathways in diabetes. Biochem Pharmacol 2003; 66(8): 1433-1440. https://doi.org/10.1016/S0006-2952(03)00494-5
  20. Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 2005; 54 Suppl 2: S97-S107. https://doi.org/10.2337/diabetes.54.suppl_2.S97
  21. Hanafusa T, Imagawa A. Insulitis in human type 1 diabetes. Ann N Y Acad Sci 2008; 1150(1): 297-299. https://doi.org/10.1196/annals.1447.052
  22. Kim EK, Kwon KB, Song MY, Seo SW, Park SJ, Ka SO, Na L, Kim KA, Ryu DG, So HS, Park R, Park JW, Park BH. Genistein protects pancreatic beta cells against cytokinemediated toxicity. Mol Cell Endocrinol 2007; 278(1-2): 18-28. https://doi.org/10.1016/j.mce.2007.08.003
  23. Oh YS, Jun HS. Effects of glucagon-like peptide-1 on oxidative stress and Nrf2 signaling. Int J Mol Sci 2017; 19(1): E26. https://doi.org/10.3390/ijms19010026
  24. Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 2014; 15(6): 411-421. https://doi.org/10.1038/nrm3801
  25. Zhu J, Wang CG, Xu YG. Lycopene attenuates endothelial dysfunction in streptozotocin-induced diabetic rats by reducing oxidative stress. Pharm Biol 2011; 49(11): 1144-1149. https://doi.org/10.3109/13880209.2011.574707
  26. Huang C, Gan D, Fan C, Wen C, Li A, Li Q, Zhao J, Wang Z, Zhu L, Lu D. The secretion from neural stem cells pretreated with lycopene protects against tert-butyl hydroperoxide-induced neuron oxidative damage. Oxid Med Cell Longev 2018; 2018: 5490218.
  27. Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 1998; 18(3): 231-236. https://doi.org/10.1038/ng0398-231
  28. Zhang P, Liu C, Zhang C, Zhang Y, Shen P, Zhang J, Zhang CY. Free fatty acids increase PGC-1alpha expression in isolated rat islets. FEBS Lett 2005; 579(6): 1446-1452. https://doi.org/10.1016/j.febslet.2005.01.046