참고문헌
- Kim, B.J., Kim, Y.K. and Choi, J.K. (2015). Investigating applicability of unmanned aerial vehicle to the tidal flat zone, IEEE Korean J. Remote. Sens., 31(5), 461-471. https://doi.org/10.7780/kjrs.2015.31.5.10
- Kim, E.J., Nam, S.H., Koo, J.W., Lee, S.M., Ahn, C.H., Park, J.R., Park, J.I. and Hwang, T.M. (2017). Applicability of unmanned aerial vehicle for chlorophyll-a map in river, J. Korean Soc. Water Wastewater, 31(3), 197-204. https://doi.org/10.11001/jksww.2017.31.3.197
- Chen, L., Tan, C.H., Kao, S.J. and Wang, T.S. (2008). Improvement of remote monitoring on water quality in a subtropical reservoir by incorporating grammatical evolution with parallel genetic algorithms into satellite imagery, Water Res., 42(1-2), 296-306. https://doi.org/10.1016/j.watres.2007.07.014
- Flynn, K.F. and Chapra, S.C. (2014). Remote Sensing of submerged aquatic vegetation in a shallow Non-turbid river using an unmanned aerial vehicle, Korean J. Remote. Sens., 6, 12815-12836. https://doi.org/10.3390/rs61212815
- Fraser, R.S., Ferrare, R.A., Kaufman, Y.J., Markham, B.L. and Mattoo, S. (1992). Algorithm for atmospheric corrections of aircraft and satellite imagenary, Int. J. Remote. Sens., 13(3), 541-557. https://doi.org/10.1080/01431169208904056
- Huang, C., Wang, X., Yang, H., Li, Y., Wang, Y., Chen, X. and Xu, L. (2014). Satellite data regarding the eutrophication response to human activities in the plateau lake Dianchi in China from 1974 to 2009, Sci. Total Environ., 485-486(1), 1-11. https://doi.org/10.1016/j.scitotenv.2014.03.031
- Gregor, J. and Marsalek, B. (2004). Freshwater phytoplankton quantification by chlorophyll-a: a comparative study of in vitro, in vivo and in situ methods, Water Res., 38, 517-522. https://doi.org/10.1016/j.watres.2003.10.033
- Jensen, J.R. (2007). Remote sensing of the environment: An earth resource perspective(2nd edition) Upper Saddle River, NJ: Pearson Prentice Hall.
- Kageyama, Y., Takahashi, J., Nishida, M., Kobori, B. and Nagamoto, D. (2016). Analysis of water quality in Miharu Dam reservoir, Japan, using UAV Data, IEEJ Trans. Electr. Electron. Eng., 11(S1), S183-S185. https://doi.org/10.1002/tee.22253
- Kaufman, Y.J. and Tanre, D. (1996). Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: From AVHRR to EOS-MODIS, Remote. Sens. Environ., 5(5), 65-79.
- Inamori, Y., Sugiura, N., Iwami, N., Matsumura, M., Hiroki, M. and Watanabe, M.M. (1998). Degradation of the toxic cyanobacterium Microcystis viridis using predaceous micro-animals combined with bacteria, Phycol. Res., 46, 37-44.
- Lee, H. Kang, T.G., Nam, G.B., Ha, R. and Cho, K.H. (2015). Remote estimation models for deriving chlorophyll-a concentration using optical properties in turbid inland waters : Application and valuation, J. Korean Soc. Water Environ., 31(3), 272-285. https://doi.org/10.15681/KSWE.2015.31.3.272
- Liu, R., Xie, T., Wang Q. and Li, H. (2010). Space-earth based integrated monitoring system for water environment, Proced. Environ. Sci., 2, 1307-1314. https://doi.org/10.1016/j.proenv.2010.10.141
- Lowe, G.D. (2004). Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis., 20, 91-110.
- McClain, C.R., Cleave, M.L., Feldman, G.C., Gregg, W.W., Hooker, S.B. and Kuring, N. (1998). Science quality SeaWiFS data for global biosphere research, Sea Technol. Repr., 10-16.
- Merwe, D.V. and Price, K.P. (2015). Harmful algal bloom characterization at ultra-high spatial and temporal resolution using small unmanned aircraft systems, Toxins, 7(4), 1065-1078. https://doi.org/10.3390/toxins7041065
- Mishra, S. and Mishra, D.R. (2012). Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters, Remote. Sens. Environ., 117, 394-406. https://doi.org/10.1016/j.rse.2011.10.016
- Morel, A. and Prieur, L. (1977). Analysis of variation in ocean, Limnol. Oceanogr., 22, 709-722. https://doi.org/10.4319/lo.1977.22.4.0709
- Olmanson, L.G., Brezonik, P.L. and Bauer, M.E. (2011). Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments, Water Resour. Res., 47(9), 1-14. https://doi.org/10.1029/2010WR009138
- Pajares, G. (2015). Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs), Am. Soc. Photogramm. Remote. Sens., 81(4), 281-329. https://doi.org/10.14358/PERS.81.4.281
- Park, Y.J. and Ruddick, K. (2010). Detection of algal blooms in European waters based on satellite chlorophyll data from MERIS and MODIS, Int. J. Remote. Sens., 31(24), 6567-6583. https://doi.org/10.1080/01431161003801369
- Park, J.I., Choi, S.Y. and Park, M.H. (2017). A study on green algae monitoring in watershed using fixed wing UAV, J. Korean Inst. Intell. Syst., 27(2), 164-169. https://doi.org/10.5391/JKIIS.2017.27.2.164
- Richardson, L.L. (1996). Remote sensing of algal bloom dynamics, BioSci., 46(7), 492-501. https://doi.org/10.2307/1312927
- Sellner, K.G, Doucette, G.J. and Kirkpatrick, G.J. (2003). Harmful algal blooms: causes, impacts and detection, J. Ind. Microbiol. Biotechnol., 30(7), 383-406. https://doi.org/10.1007/s10295-003-0074-9
- Su, T.C. and Chou, H.T. (2015). Application of multispectral sensors carried on unmanned aerial vehicle (UAV) to trophic state mapping of small reservoirs: A case study of Tain-Pu reservoir in Kinmen, Taiwan, Remote. Sens., 7, 10078-10097. https://doi.org/10.3390/rs70810078
- Su, T.C. (2017). A study of a matching pixel by pixel (MPP) algorithm to establish an empirical model of water quality mapping, as based on unmanned aerial vehicle (UAV) images, Int. J. Appl. Earth Observation Geoinform., 58, 213-224. https://doi.org/10.1016/j.jag.2017.02.011
- Su, T.C. and Chou, H.T. (2015). Application of multispectral sensors carried on unmanned aerial vehicle (UAV) to trophic state mapping of small reservoirs: A case study of Tain-Pu reservoir in Kinmen, Taiwan, Remote. Sens., 7(8), 10078-10097. https://doi.org/10.3390/rs70810078
- Tarrant, P.E., Amacher, J.A. and Neuer, S. (2010). Assessing the potential of medium-resolution imaging spectrometer (MERIS) and moderate-resolution imaging spectroradiometer (MODIS) data for monitoring total suspended matter in small and intermediate sized lakes and reservoirs, Water Resour. Res., 46(9), 1-7.
- Tripolitsiotis, A., Prokas, N., Kyritsis, S., Dollas, A., Ioannis, P. and Partsinevelos, P. (2017). Dronesourcing: a modular, expandable multisensor UAV platform for combined, real-time environmental monitoring, Int. J. Remote. Sens., 38(8-10), 2757-2770. https://doi.org/10.1080/01431161.2017.1287975
- Watanabea, Y. and Kawaharab, Y. (2016). UAV photogrammetry for monitoring changes in river topography and vegetation, Proced. Eng., 154, 317-325. https://doi.org/10.1016/j.proeng.2016.07.482
- Xie, X., Xu, Y., Liu, Q., Hu, F., Cai, T., Jiang, N. and Xiong, H. (2015). A study on fast SIFT image mosaic algorithm based on compressed sensing and wavelet transform, J. Ambient. Intell. Humaniz. Comput., 6, 835-843. https://doi.org/10.1007/s12652-015-0319-2
- Zaman, B., Jensen, A., Clemens, S.R. and McKee, M. (2014). Retrieval of spectral reflectance of high resolution multispectral imagery acquired with an autonomous unmanned aerial vehicle, Am. Soc. Photogramm. Remote. Sens., 80(12), 1139-1150. https://doi.org/10.14358/PERS.80.12.1139
- Zarco-Tejada, P.J., Gonzalez-Dugo, V. and Berni, J.A.J. (2012). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera, Remote. Sens. Environ., 117, 322-337. https://doi.org/10.1016/j.rse.2011.10.007