References
- Fuller R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
- Mazza P. 1994. The use of Bacillus subtilis as an antidiarrhoeal microorganism. Boll. Chim. Farm. 133: 3-18.
- Hoa TT, Duc LH, Isticato R, Baccigalupi L, Ricca E, Van PH, et al. 2001. Fate and dissemination of Bacillus subtilis spores in a murine model. Appl. Environ. Microbiol. 67: 3819-3823. https://doi.org/10.1128/AEM.67.9.3819-3823.2001
- Bader J, Albin A, Stahl U. 2012. Spore-forming bacteria and their utilisation as probiotics. Benef Microbes. 3: 67-75. https://doi.org/10.3920/BM2011.0039
- Lefevre M, Racedo SM, Ripert G, Housez B, Cazaubiel M, Maudet C, et al. 2015. Probiotic strain Bacillus subtilis CU1 stimulates immune system of elderly during common infectious disease period: a randomized, double-blind placebo-controlled study. Immun. Ageing 12: 24. https://doi.org/10.1186/s12979-015-0051-y
- Shobharani P, Padmaja RJ, Halami PM. 2015. Diversity in the antibacterial potential of probiotic cultures Bacillus licheniformis MCC2514 and Bacillus licheniformis MCC2512. Res. Microbiol. 166: 546-554. https://doi.org/10.1016/j.resmic.2015.06.003
- Ripert G, Racedo SM, Elie AM, Jacquot C, Bressollier P, Urdaci MC. 2016. Secreted compounds of the probiotic bacillus clausii strain O/C inhibit the cytotoxic effects induced by Clostridium difficile and Bacillus cereus toxins. Antimicrob. Agents Chemother. 60: 3445-3454. https://doi.org/10.1128/AAC.02815-15
- Pham M, Lemberg DA, Day AS. 2008. Probiotics: sorting the evidence from the myths. Med. J. Aust. 188: 304-308.
- Hong HA, Duc le LH, Cutting SM. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29: 813-835. https://doi.org/10.1016/j.femsre.2004.12.001
- Lakshmi SG, Jayanthi N, Saravanan M, Ratna MS. 2017. Safety assesment of Bacillus clausii UBBC07, a spore forming probiotic. Toxicol. Rep. 4: 62-71. https://doi.org/10.1016/j.toxrep.2016.12.004
- Urdaci MC, Bressollier P, Pinchuk I. 2004. Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities. J. Clinic Gastroenterol. 38: S86-S90. https://doi.org/10.1097/01.mcg.0000128925.06662.69
- Upadrasta A, Pitta S, Madempudi RS. 2016. Draft genome sequence of Bacillus clausii UBBC07, a spore-forming probiotic strain. Genome Announc. 4: e00235-16.
- Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477. https://doi.org/10.1089/cmb.2012.0021
- Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 9: 75. https://doi.org/10.1186/1471-2164-9-75
- Auch AF, Jan M, Klenk HP, Goker M. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic. Sci. 28: 117-134.
- Alikhan NF, Petty NK, Zakour NLB, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 12: 402. https://doi.org/10.1186/1471-2164-12-402
- Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. 2015. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43: W237-W243. https://doi.org/10.1093/nar/gkv437
- van Heel AJ, de Jong A, Montalban-Lopez M, Kok J, Kuipers OP. 2013. BAGEL3: automated identification of genes encoding bacteriocins and (non-) bactericidal posttranslationally modified peptides. Nucleic Acids Res. 41: W448-W453. https://doi.org/10.1093/nar/gkt391
- Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. 2016. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45: D566-D573.
- Holzapfel WH, Haberer P, Geisen R, Bjorkroth J, Schillinger U. 2001. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr. 73: 365s-373s. https://doi.org/10.1093/ajcn/73.2.365s
- Han XY. 2006. Bacterial identification based on 16S ribosomal RNA gene sequence analysis. In: Advanced techniques in diagnostic microbiology, Springer, Boston, MA, pp. 323-332.
- Sleator RD, Watson D, Hill C, Gahan CG. 2009. The interaction between Listeria monocytogenes and the host gastrointestinal tract. Microbiology 155: 2463-2475. https://doi.org/10.1099/mic.0.030205-0
- Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, et al. 2009. The Listeria transcriptional landscape from saprophytism to virulence. Nature 459: 950-956. https://doi.org/10.1038/nature08080
- Ryan S, Hill C, Gahan CG. 2008. Acid stress responses in Listeria monocytogenes. Adv. Appl. Microbiol. 65: 67-91.
- Cotter PD, Hill C. 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67: 429-453. https://doi.org/10.1128/MMBR.67.3.429-453.2003
-
Hain T, Hossain H, Chatterjee SS, Machata S, Volk U, Wagner S, et al. 2008. Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e
${\sigma}$ B regulon. BMC Microbiol. 8: 20. https://doi.org/10.1186/1471-2180-8-20 - Lehri B, Seddon AM, Karlyshev AV. 2017. Potential probiotic-associated traits revealed from completed high quality genome sequence of Lactobacillus fermentum 3872. Stand Genomic Sci. 12: 19. https://doi.org/10.1186/s40793-017-0228-4
- Khatri I, Sharma S, Ramya TNC, Subramanian S. 2016. Complete genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, two phylogenetically distinct probiotics. PLoS One. 11: e0156745. https://doi.org/10.1371/journal.pone.0156745
- Begley M, Gahan CG, Hill C. 2005. The interaction between bacteria and bile. FEMS Microbiol. Re. 29: 625-651. https://doi.org/10.1016/j.femsre.2004.09.003
- McAuliffe O, Cano RJ, Klaenhammer TR. 2005. Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 71: 4925-4929. https://doi.org/10.1128/AEM.71.8.4925-4929.2005
- Denou E, Pridmore RD, Berger B, Panoff JM, Arigoni F, Brussow H. 2008. Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis. J. Bacteriol. 190: 3161-3168. https://doi.org/10.1128/JB.01637-07
- Lim SM. 2014. Antimutagenicity activity of the putative probiotic strain Lactobacillus paracasei subsp. tolerans JG22 isolated from pepper leaves Jangajji. Food Sci. Biotechnol. 23: 141-150. https://doi.org/10.1007/s10068-014-0019-2
- Granato D, Bergonzelli GE, Pridmore RD, Marvin L, Rouvet M, Corthesy-Theulaz IE. 2004. Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect. Immun. 72: 2160-2169. https://doi.org/10.1128/IAI.72.4.2160-2169.2004
- Howarth GS, Wang H. 2013. Role of endogenous microbiota, probiotics and their biological products in human health. Nutrients 5: 58-81. https://doi.org/10.3390/nu5010058
- Ruas-Madiedo P, Gueimonde M, Margolles A, de los REYESGAVILAN CG, Salminen S. 2006. Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J. Food Prot. 69: 2011-2015. https://doi.org/10.4315/0362-028X-69.8.2011
- Kodali VP, Sen R. 2008. Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol. J. 3: 245-251. https://doi.org/10.1002/biot.200700208
- Haiko J, Westerlund-Wikstrom B. 2013. The role of the bacterial flagellum in adhesion and virulence. Biology 2: 1242-1267. https://doi.org/10.3390/biology2041242
- Cotter PD, Ross RP, Hill C. 2013. Bacteriocins-a viable alternative to antibiotics?. Nat. Rev. Microbiol. 11: 95-105. https://doi.org/10.1038/nrmicro2937
- Lv LX, Li YD, Hu XJ, Shi HY, Li LJ. 2014. Whole-genome sequence assembly of Pediococcus pentosaceus LI05 (CGMCC 7049) from the human gastrointestinal tract and comparative analysis with representative sequences from three food-borne strains. Gut. Pathog. 6: 36. https://doi.org/10.1186/s13099-014-0036-y
- Cotter PD, Hill C, Ross RP. 2005. Food microbiology: bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3: 777-788. https://doi.org/10.1038/nrmicro1273
- Gonzalez-Martinez BE, Gomez-Trevino, Jimenez-Salas Z. 2003. Bacteriocinas de probioticos. Rev Cub Salud Publica. 4.
-
Hertzberger R, Arents J, Dekker HL, Pridmore RD, Gysler C, Kleerebezem M, et al. 2014.
$H_2O_2$ production in species of the Lactobacillus acidophilus group: a central role for a novel NADHdependent flavin reductase. Appl. Environ. Microbiol. 80: 2229-2239. https://doi.org/10.1128/AEM.04272-13 - Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. 2012. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ. Microbiol. 14: 2870-2890. https://doi.org/10.1111/j.1462-2920.2012.02841.x
- Roberfroid MB. 2002. Prebiotics and probiotics: are they functional foods?. Am. J. Clin. Nutr. 71: 1682S-1687S.
- Campbell JM, Fahey Jr GC, Wolf BW. 1997. Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal shortchain fatty acids, pH and microflora in rats. J. Nutr. 127: 130-136. https://doi.org/10.1093/jn/127.1.130
- Gibson GR, McCartney AL, Rastall RA. 2005. Prebiotics and resistance to gastrointestinal infections. Br. J. Nutr. 93: S31-S34. https://doi.org/10.1079/BJN20041343
- Grootaert C, Van den Abbeele P, Marzorati M, Broekaert WF, Courtin CM, Delcour JA, et al. 2009. Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol. Ecol. 69: 231-242. https://doi.org/10.1111/j.1574-6941.2009.00712.x
-
Gueimonde M, Noriega L, Margolles A, Clara G. 2007. Induction of
${\alpha}$ -l-arabinofuranosidase activity by monomeric carbohydrates in Bifidobacterium longum and ubiquity of encoding genes. Arch. Microbiol. 187: 145-153. https://doi.org/10.1007/s00203-006-0181-x -
Di Pierro F, Bertuccioli A, Marini E, Ivaldi L. 2015. A pilot trial on subjects with lactose and/or oligosaccharides intolerance treated with a fixed mixture of pure and enteric-coated
${\alpha}$ -and${\beta}$ -galactosidase. Clin. Exp. Gastroenterol. 8: 95-100. - Parche S, Amon J, Jankovic I, Rezzonico E, Beleut M, Barutcu H, et al. 2007. Sugar transport systems of Bifidobacterium longum NCC2705. J. Mol. Microbiol. Biotechnol. 12: 9-19. https://doi.org/10.1159/000096455
- Preidis GA, Hill C, Guerrant RL, Ramakrishna BS, Tannock GW, Versalovic J. 2011. Probiotics, enteric and diarrheal diseases, and global health. Gastroenterology 140: 8-14. https://doi.org/10.1053/j.gastro.2010.11.010
- Saulnier DM, Santos F, Roos S, Mistretta TA, Spinler JK, Molenaar D, et al. 2011. Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS One 6: e18783. https://doi.org/10.1371/journal.pone.0018783
- Mills S, Stanton C, Fitzgerald GF, Ross R. 2011, December. Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microb. Cell Fact. 10: S19. https://doi.org/10.1186/1475-2859-10-S1-S19
- Van Melderen L. 2010. Toxin-antitoxin systems: why so many, what for?. Curr. Opin. Microbiol. 13: 781-785. https://doi.org/10.1016/j.mib.2010.10.006
- Yan X, Gurtler JB, Fratamico PM, Hu J, Juneja VK. 2012. Phylogenetic identification of bacterial MazF toxin protein motifs among probiotic strains and foodborne pathogens and potential implications of engineered probiotic intervention in food. Cell Biosci. 2: 39. https://doi.org/10.1186/2045-3701-2-39
- Aizenman E, Engelberg-Kulka H, Glaser G. 1996. An Escherichia coli chromosomal" addiction module" regulated by guanosine [corrected] 3', 5'-bispyrophosphate: a model for programmed bacterial cell death. Proc. Natl. Acad. Sci. USA 93: 6059-6063. https://doi.org/10.1073/pnas.93.12.6059
- Ramisetty BCM, Natarajan B, Santhosh RS. 2015. mazEF-mediated programmed cell death in bacteria: "what is this?". Crit. Rev. Microbiol. 41: 89-100. https://doi.org/10.3109/1040841X.2013.804030
- Kappes RM, Kempf B, Bremer E. 1996. Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J. Bacteriol. 178: 5071-5079. https://doi.org/10.1128/jb.178.17.5071-5079.1996
- Gueimonde M, Sanchez B, de los Reyes-Gavilan CG, Margolles A. 2013. Antibiotic resistance in probiotic bacteria. Front Microbiol. 4: 202.
- McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. 2013. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 57: 3348-3357. https://doi.org/10.1128/AAC.00419-13
- Eggers CT, Murray IA, Delmar VA, Day AG, Craik CS. 2004. The periplasmic serine protease inhibitor ecotin protects bacteria against neutrophil elastase. Biochem. J. 379: 107-118. https://doi.org/10.1042/bj20031790