DOI QR코드

DOI QR Code

E형 간염 바이러스에 의한 제 1형 인터페론 신호전달분자 활성 억제

Hepatitis E Virus Inhibits Activation of Signaling Molecules Involved in Induction of Type I Interferon

  • 명진종 (전북대학교 인수공통전염병연구소)
  • Myoung, Jinjong (Korea Zoonosis Research Institute, Chonbuk National University)
  • 투고 : 2018.09.19
  • 심사 : 2018.10.08
  • 발행 : 2018.12.28

초록

E형 간염바이러스는 전세계적으로 매년 2천만건의 감염을 일으키는 것으로 알려져 있다. 흥미로운 것은 임산부에서 특히 높은 치사율을 보이는데, 무려 20-30%의 사망률을 보인다는 점이다. 면역능이 있는 감염환자에서는 E형 간염바이러스 감염은 별다른 증상 없이 자연 치유되지만, 면역능이 낮은 에이즈환자나 고령환자에서는 만성감염을 일으킬 수도 있으며 사망에 이르게 할 수도 있다. 따라서, E형 간염바이러스의 증식억제에 면역반응의 중요성이 높으며, 특히 인터페론 반응이 중요한 역할을 할 것으로 사료된다. 본 연구팀은 E형 간염바이러스의 프로티아제가 RIG-I 의존적 제 1형 인터페론 반응을 유의미하게 억제하는 것을 관찰하였다. 또한 바이러스 프로티아제가 RIG-I의 하위 신혼전달 분자의 하나인 MAVS의 활성도 농도 의존적으로 억제하는 것으로 분석하였다. E형 간염바이러스에 의한 제 1형 인터페론 반응 억제의 구체적인 작용 기작을 밝힌다면 효과적인 항바이러스제제의 개발의 초석을 놓을 수 있을 것으로 기대된다.

Hepatitis E virus (HEV) infection accounts for 20 million annual infections worldwide. HEV can be fatal in approximately 20-30% of pregnant women. HEV infections are normally self-limiting and mostly asymptomatic. However, in patients with insufficient immunity, such as acquired immunodeficiency syndrome patients, chronic and often fatal infections may ensue. Therefore, it is likely that host immune responses, especially interferon responses, play a critical role in HEV infection control. Here, we report that an HEV-encoded non-structural protein down-regulates type I interferon response. In addition, some other immune genes involved in the induction of type I interferon may be regulated as well. Detailed molecular mechanisms are currently being studied.

키워드

참고문헌

  1. Forni D, Cagliani R, Clerici M, Sironi M. 2018. Origin and dispersal of Hepatitis E virus. Emerg. Microbes. Infect. 7: 11.
  2. Tam AW, Smith MM, Guerra ME, Huang CC, Bradley DW, Fry KE, et al. 1991. Hepatitis E virus (HEV): molecular cloning and sequencing of the full-length viral genome. Virology 185: 120-131. https://doi.org/10.1016/0042-6822(91)90760-9
  3. Kang S, Choi C, Choi I, Han KN, Roh SW, Choi J, et al. 2018. Hepatitis E Virus Methyltransferase Inhibits Type I Interferon Induction by Targeting RIG-I. J. Microbiol. Biotechnol. 28: 1554-1562.
  4. Kang S, Myoung J. 2017. Host Innate Immunity against Hepatitis E Virus and Viral Evasion Mechanisms. J. Microbiol. Biotechnol. 27: 1727-1735. https://doi.org/10.4014/jmb.1708.08045
  5. Kim N, Now H, Nguyen NTH, Yoo JY. 2016. Multilayered regulations of RIG-I in the anti-viral signaling pathway. J. Microbiol. 54: 583-587. https://doi.org/10.1007/s12275-016-6322-2
  6. Schmidt ME, Varga SM. 2017. Modulation of the host immune response by respiratory syncytial virus proteins. J. Microbiol. 55: 161-171. https://doi.org/10.1007/s12275-017-7045-8
  7. Theofilopoulos AN, Baccala R, Beutler B, Kono DH. 2005. Type I interferons (${\alpha}$/${\beta}$) in immunity and autoimmunity. Annu. Rev. Immunol. 23: 307-336. https://doi.org/10.1146/annurev.immunol.23.021704.115843
  8. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. 2015. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15: 405-414. https://doi.org/10.1038/nri3845
  9. Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, et al. 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82: 335-345. https://doi.org/10.1128/JVI.01080-07
  10. Takeuchi OandAkira S. 2010. Pattern recognition receptors and inflammation. Cell 140: 805-820. https://doi.org/10.1016/j.cell.2010.01.022
  11. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, et al. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6: 981-988. https://doi.org/10.1038/ni1243
  12. Seth RB, Sun L, Ea CK, Chen ZJ. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-${\kappa}B$ and IRF 3. Cell. 122: 669-682. https://doi.org/10.1016/j.cell.2005.08.012
  13. Grandvaux N, Servant MJ, tenOever B, Sen GC, Balachandran S, Barber GN, et al. 2002. Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J. Virol. 76: 5532-5539. https://doi.org/10.1128/JVI.76.11.5532-5539.2002
  14. Honda K, Takaoka A, Taniguchi T. 2006. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25: 349-360. https://doi.org/10.1016/j.immuni.2006.08.009
  15. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347: aaa2630. https://doi.org/10.1126/science.aaa2630
  16. Wi J, Jeong MS, Hong HJ. 2017. Construction and characterization of an Anti-Hepatitis B Virus preS1 humanized antibody that binds to the essential receptor binding site. J. Microbiol. Biotechnol. 27: 1336-1344. https://doi.org/10.4014/jmb.1703.03066
  17. Bode JG, Ludwig S, Ehrhardt C, Albrecht U, Erhardt A, Schaper F, et al. 2003. IFN-${\alpha}$ antagonistic activity of HCV core protein involves induction of suppressor of cytokine signaling-3. FASEB J. 17: 488-490. https://doi.org/10.1096/fj.02-0664fje
  18. Kang SM, Won SJ, Lee GH, Lim YS, Hwang SB. 2010. Modulation of interferon signaling by hepatitis C virus non-structural 5A protein: implication of genotypic difference in interferon treatment. FEBS Lett. 584: 4069-4076. https://doi.org/10.1016/j.febslet.2010.08.032
  19. Lan KH, Lan KL, Lee WP, Sheu ML, Chen MY, Lee YL, et al. 2007. HCV NS5A inhibits interferon-alpha signaling through suppression of STAT1 phosphorylation in hepatocyte-derived cell lines. J. Hepatol. 46: 759-767.
  20. Li K, Foy E, Ferreon JC, Nakamura M, Ferreon AC, Ikeda M, et al. 2005. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl. Acad. Sci. USA 102: 2992-2997. https://doi.org/10.1073/pnas.0408824102
  21. Li XD, Sun L, Seth RB, Pineda G, Chen ZJ. 2005. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc. Natl. Acad.Sci. USA 102: 17717-17722. https://doi.org/10.1073/pnas.0508531102
  22. Lin W, Kim SS, Yeung E, Kamegaya Y, Blackard JT, Kim KA, et al. 2006. Hepatitis C virus core protein blocks interferon signaling by interaction with the STAT1 SH2 domain. J. Virol. 80: 9226-9235. https://doi.org/10.1128/JVI.00459-06
  23. Taylor DR, Shi ST, Romano PR, Barber GN, Lai MM. 1999. Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science 285: 107-110. https://doi.org/10.1126/science.285.5424.107
  24. Jilani N, Das BC, Husain SA, Baweja UK, Chattopadhya D, Gupta RK, et al. 2007. Hepatitis E virus infection and fulminant hepatic failure during pregnancy. J. Gastroenterol. Hepatol. 22: 676-682. https://doi.org/10.1111/j.1440-1746.2007.04913.x
  25. Navaneethan U, Al Mohajer M, Shata MT. 2008. Hepatitis E and pregnancy: understanding the pathogenesis. Liver Int. 28: 1190-1199. https://doi.org/10.1111/j.1478-3231.2008.01840.x
  26. Krain LJ, Nelson KE, Labrique AB. 2014. Host immune status and response to hepatitis E virus infection. Clin. Microbiol. Rev. 27: 139-165. https://doi.org/10.1128/CMR.00062-13
  27. Zhou X, Xu L, Wang W, Watashi K, Wang Y, Sprengers D, et al. 2016. Disparity of basal and therapeutically activated interferon signalling in constraining hepatitis E virus infection. J. Viral Hepat. 23: 294-304. https://doi.org/10.1111/jvh.12491
  28. Karpe YA, Lole KS. 2011. Deubiquitination activity associated with hepatitis E virus putative papain-like cysteine protease. J. Gen. Virol. 92: 2088-2092. https://doi.org/10.1099/vir.0.033738-0
  29. Nan Y, Yu Y, Ma Z, Khattar SK, Fredericksen B, Zhang YJ. 2014. Hepatitis E virus inhibits type I interferon induction by ORF1 products. J. Virol. 88: 11924-11932. https://doi.org/10.1128/JVI.01935-14
  30. Oshiumi H, Miyashita M, Matsumoto M, Seya T. 2013. A distinct role of Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. PLoS Pathog. 9: e1003533. https://doi.org/10.1371/journal.ppat.1003533
  31. Choi S, Park H, Minelko M, Kim EK, Cho MR, Nam JH. 2017. Recombinant adeno-associated virus expressing truncated IK cytokine diminishes the symptoms of inflammatory arthritis. J. Microbiol. Biotechnol. 27: 1892-1895. https://doi.org/10.4014/jmb.1705.05018
  32. Hamid FB, Kim J, Shin CG. 2017. Characterization of prototype foamy virus infectivity in transportin 3 knockdown human 293t cell line. J. Microbiol. Biotechnol. 27: 380-387. https://doi.org/10.4014/jmb.1606.06011
  33. Kim MJ, Lee SY, Kim HJ, Lee JS, Joo IS, Kwak HS, et al. 2016. Development of a one-step duplex RT-PCR method for the simultaneous detection of VP3/VP1 and VP1/P2B regions of the Hepatitis A Virus. J. Microbiol. Biotechnol. 26: 1398-1403. https://doi.org/10.4014/jmb.1604.04047
  34. Lee JM, Cho JB, Ahn HC, Jung W, Jeong YJ. 2017. A novel chemical compound for inhibition of SARS coronavirus helicase. J. Microbiol. Biotechnol. 27: 2070-2073. https://doi.org/10.4014/jmb.1707.07073
  35. Lee JM, Kim J, Ryu I, Woo HM, Lee TG, Jung W, et al. 2017. An aptamer-based electrochemical sensor that can distinguish influenza virus subtype H1 from H5. J Microbiol Biotechnol. 27: 2037-2043. https://doi.org/10.4014/jmb.1708.08015
  36. Lim S, Cha S, Jang JH, Yang D, Choe J, Seo T. 2016. Alterations in acetylation of histone H4 Lysine 8 and trimethylation of lysine 20 associated with lytic gene promoters during Kaposi's sarcoma-associated herpesvirus reactivation. J. Microbiol. Biotechnol. 27: 189-196.
  37. Elkholy YS, Hegab AS, Ismail DK, Hassan RM. 2016. Evaluation of a novel commercial quaternary ammonium compound for eradication of mycobacteria, HCV and HBV in egypt. J. Microbiol. 54: 39-43. https://doi.org/10.1007/s12275-016-5530-0
  38. Jeong H, Seong BL. 2017. Exploiting virus-like particles as innovative vaccines against emerging viral infections. J. Microbiol. 55: 220-230. https://doi.org/10.1007/s12275-017-7058-3
  39. Kim JH, Lee CH, Lee SW. 2016. Hepatitis C virus infection stimulates transforming growth factor-${\beta}1$ expression through upregulating miR-192. J. Microbiol. 54: 520-526. https://doi.org/10.1007/s12275-016-6240-3
  40. Shin JS, Ku KB, Jang Y, Yoon YS, Shin D, Kwon OS, et al. 2017. Comparison of anti-influenza virus activity and pharmacokinetics of oseltamivir free base and oseltamivir phosphate. J. Microbiol. 55: 979-983. https://doi.org/10.1007/s12275-017-7371-x