DOI QR코드

DOI QR Code

The Pragmatic Introduction and Expression of Microbial Transgenes in Plants

  • Ali, Sajid (School of Applied Biosciences, Kyungpook National University) ;
  • Park, Soon-Ki (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Won-Chan (School of Applied Biosciences, Kyungpook National University)
  • 투고 : 2018.08.16
  • 심사 : 2018.10.23
  • 발행 : 2018.12.28

초록

Several genetic strategies have been proposed for the successful transformation and expression of microbial transgenes in model and crop plants. Here, we bring into focus the prominent applications of microbial transgenes in plants for the development of disease resistance; mitigation of stress conditions; augmentation of food quality; and use of plants as "bioreactors" for the production of recombinant proteins, industrially important enzymes, vaccines, antimicrobial compounds, and other valuable secondary metabolites. We discuss the applicable and cost-effective approaches of transgenesis in different plants, as well as the limitations thereof. We subsequently present the contemporary developments in targeted genome editing systems that have facilitated the process of genetic modification and manifested stable and consumer-friendly, genetically modified plants and their products. Finally, this article presents the different approaches and demonstrates the introduction and expression of microbial transgenes for the improvement of plant resistance to pathogens and abiotic stress conditions and the production of valuable compounds, together with the promising research progress in targeted genome editing technology. We include a special discussion on the highly efficient CRISPR-Cas system helpful in microbial transgene editing in plants.

키워드

참고문헌

  1. Rai MK, Shekhawat NS. 2014. Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tissue Organ Culture 116: 1-15. https://doi.org/10.1007/s11240-013-0389-9
  2. Lorito M, Scala F. 1999. Microbial genes expressed in transgenic plants to improve disease resistance. J. Plant Pathol. 81: 73-88.
  3. Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, et al. 2005. Gene transfer to plants by diverse species of bacteria. Nature 433: 629-633. https://doi.org/10.1038/nature03309
  4. Tobias CM, Oldroyd GE, Chang JH, Staskawicz BJ. 1999. Plants expressing the Pto disease resistance gene confer resistance to recombinant PVX containing the avirulence gene AvrPto. Plant J. 17: 41-50. https://doi.org/10.1046/j.1365-313X.1999.00350.x
  5. Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S. 2004. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and upregulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol. 45: 712-722. https://doi.org/10.1093/pcp/pch083
  6. Castiglia D, Sannino L, Marcolongo L, Ionata E, Tamburino R, Stradis A, et al. 2016. High-level expression of thermostable cellulolytic enzymes in tobacco transplastomic plants and their use in hydrolysis of an industrially pretreated Arundo donax L. biomass. Biotechnol. Biofuels 9: 154. https://doi.org/10.1186/s13068-016-0569-z
  7. Yang YY, Mei F, Zhang W, Shen Z, Fang J. 2014. Creation of Bt rice expressing a fusion protein of Cry1Ac and Cry1Ilike using a green tissue-specific promoter. J. Econ Entomol. 107: 1674-1679. https://doi.org/10.1603/EC13497
  8. Yang L, Hu C, Li N, Zhang J, Yan J, Deng Z. 2011. Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease. Plant Mol. Biol. 75: 11-23. https://doi.org/10.1007/s11103-010-9699-z
  9. Guan ZJ, Guo B, Hao HY, Huo YL, Dai JK, Wei YH. 2012. Expression of hepatitis B surface antigen (HBsAg) gene in transgenic cherry tomato. African J. Biotechnol. 11: 7186-7192.
  10. Collinge DB, Jorgensen HJ, Lund OS, Lyngkjaer MF (2010). Engineering pathogen resistance in crop plants: current trends and future prospects. Annu. Rev. Phytopathol. 48: 269-291. https://doi.org/10.1146/annurev-phyto-073009-114430
  11. Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, et al. 2007. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ. Pollut. 147: 540-545. https://doi.org/10.1016/j.envpol.2006.10.014
  12. Grichko VP, Glick BR. 2001. Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiol. Biochem. 39: 19-25. https://doi.org/10.1016/S0981-9428(00)01217-1
  13. Bordas M, Montesinos C, Dabauza M, Salvador A, Roig LA, Serrano R, et al. 1997. Transfer of the yeast salt tolerance gene HAL1 to Cucumis melo L. cultivars and in vitro evaluation of salt tolerance. Transgenic Res. 6: 41-50. https://doi.org/10.1023/A:1018453032336
  14. Quan R, Shang M, Zhang H, Zhao Y, Zhang J. 2004. Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci. 166: 141-149. https://doi.org/10.1016/j.plantsci.2003.08.018
  15. Tacket CO, Mason HS, Losonsky G, Clements JD, Levine MM, Arntzen CJ. 1998. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat. Med. 4: 607-609. https://doi.org/10.1038/nm0598-607
  16. Kim D S, L ee SH, Ko K. 2015. Expression and function of plant-derived recombinant multiple monoclonal antibodies for the recognition of human colorectal cancer cells. Plant Biotechnol. Rep. 9: 361-368. https://doi.org/10.1007/s11816-015-0373-4
  17. Gambino G, Gribaudo I. 2012. Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Res. 21: 1163-1181 https://doi.org/10.1007/s11248-012-9602-6
  18. Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, Wang N. 2017. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 15: 817-823. https://doi.org/10.1111/pbi.12677
  19. Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 346(6213): 1258096.
  20. Mahfouz MM, Piatek A, Stewart CN. 2014. Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnol. J. 12: 1006-1014. https://doi.org/10.1111/pbi.12256
  21. Ab Rahman SFS, Singh E, Pieterse CM, Schenk PM. 2017. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267: 102-111.
  22. Savary S, Ficke A, Aubertot JN, Hollier C. 2012. Crop losses due to diseases and their implications for global food production losses and food security. Food Security 4: 519-537. https://doi.org/10.1007/s12571-012-0200-5
  23. Dehestani A, Kazemitabar K, Ahmadian G, Jelodar NB, Salmanian AH, Seyedi M, et al. 2010. Chitinolytic and antifungal activity of a Bacillus pumilus chitinase expressed in Arabidopsis. Biotechnol. Lett. 32: 539-546. https://doi.org/10.1007/s10529-009-0192-1
  24. Khan A, Nasir IA, Tabassum B, Aaliya K, Tariq M, Rao AQ. 2017. Expression studies of chitinase gene in transgenic potato against Alternaria solani. Plant Cell Tissue Organ. Culture. 128: 563-576. https://doi.org/10.1007/s11240-016-1134-y
  25. Kovacs G, Sagi L, Jacon G, Arinaitwe G, Busogoro JP, Thiry E, et al. 2013. Expression of a rice chitinase gene in transgenic banana ('Gros Michel', AAA genome group) confers resistance to black leaf streak disease. Transgenic Res. 22: 117-130. https://doi.org/10.1007/s11248-012-9631-1
  26. Expression of bacterial chitinase protein in tobacco leaves using two photosynthetic gene promoters. Mol. General Genetics MGG 212: 536-542.
  27. Kahlon JG, Jacobsen HJ, Cahill JF, Hall LM. 2017. Antifungal genes expressed in transgenic pea (Pisum sativum L.) do not affect root colonization of arbuscular mycorrhizae fungi. Mycorrhiza 27: 683-694. https://doi.org/10.1007/s00572-017-0781-0
  28. Anzai H, Yoneyama K, Yamaguchi I. 1989. Transgenic tobacco resistant to a bacterial disease by the detoxification of a pathogenic toxin. Mol. General Genetics MGG 219: 492-494. https://doi.org/10.1007/BF00259626
  29. Mourgues F, Brisset MN, Chevreau E. 1998. Strategies to improve plant resistance to bacterial diseases through genetic engineering. Trends Biotechnol. 16: 203-210. https://doi.org/10.1016/S0167-7799(98)01189-5
  30. Castillo E, Martinelli F, Zakharov-Negre F, Ebeler SE, Buzo TR, McKenry MV, et al. 2017. Effects of transgenic expression of Brevibacterium linens methionine gamma lyase (MGL) on accumulation of Tylenchulus semipenetrans and key aminoacid contents in Carrizo citrange. Plant Mol. Biol. 95: 497-505. https://doi.org/10.1007/s11103-017-0666-9
  31. Dasgupta I, Malathi VG, Mukherjee SK. 2003. Genetic engineering for virus resistance. Curr. Sci. 84: 341-354.
  32. Kung YJ, Bau HJ, Wu YL, Chen TM, Su WC, Yeh SD. 2009. Generation of transgenic papaya resistant to Papaya ringspot virus and Papaya leaf distortion mosaic virus. Phytopathology 99: 1312-1320. https://doi.org/10.1094/PHYTO-99-11-1312
  33. Staskawicz BJ. 2001. Genetics of plant-pathogen interactions specifying plant disease resistance. Plant Physiol. 125: 73-76. https://doi.org/10.1104/pp.125.1.73
  34. Kashyap PL, Sanghera GS, Shabir HW, Shafi W, Kumar S, Srivastava AK, et al. 2011. Genes of microorganisms: paving way to tailor next generation fungal disease resistant crop plants. Notulae Scientia Biologicae 3: 147-157. https://doi.org/10.15835/nsb346336
  35. Kombrink E, Somssich IE. 1995. Defense Responses of Plants to Pathogens. vol. 21, pp. 1-34. In Advances in botanical research. Academic Press.
  36. Wang J, Tian D, Gu K, Yang X, Wang L, Zeng X, et al. 2017. Induction of Xa10-like genes in rice cultivar nipponbare confers disease resistance to rice bacterial blight. Mol. Plant Microbe Interact. 30: 466-477. https://doi.org/10.1094/MPMI-11-16-0229-R
  37. Wu G, Shortt BJ, Lawrence EB, Levine EB, Fitzsimmons KC, Shah DM. 1995. Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7: 1357-1368.
  38. Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, et al. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764-767. https://doi.org/10.1038/nature02485
  39. Gentile A, Deng Z, La Malfa S, Distefano G, Domina F, Vitale A, et al. 2007. Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene. Plant Breeding 126: 146-151. https://doi.org/10.1111/j.1439-0523.2007.01297.x
  40. Reed GL, Jensen AS, Riebe J, Head G, Duan, J. J. 2001. Transgenic Bt potato and conventional insecticides for Colorado potato beetle management: comparative efficacy and non-target impacts. Entomologia Exp. Appl. 100: 89-100. https://doi.org/10.1046/j.1570-7458.2001.00851.x
  41. Sharma HC, Sharma KK, Crouch JH. 2004. Genetic transformation of crops for insect resistance: potential and limitations. CRC Crit. Rev. Plant Sci. 23: 47-72. https://doi.org/10.1080/07352680490273400
  42. Holmström KO, Somersalo S, Mandal A, Palva TE, Welin B. 2000. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J. Exp. Bot. 51: 177-185. https://doi.org/10.1093/jexbot/51.343.177
  43. Lee SK, Park SH, Lee JW, Lim HM, Jung SY, Park IC, Park SC. 2014. A putative cold shock protein-encoding gene isolated from Arthrobacter sp. A2-5 confers cold stress tolerance in yeast and plants. J. Korean Soc. Appl. Biol. Chem. 57: 775-782. https://doi.org/10.1007/s13765-014-4238-2
  44. Glick BR. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169: 30-39. https://doi.org/10.1016/j.micres.2013.09.009
  45. Grichko VP, Filby B, Glick BR. 2000. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J. Biotechnol. 81: 45-53. https://doi.org/10.1016/S0168-1656(00)00270-4
  46. Glick BR, Cheng Z, Czarny J, Duan J. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119: 329-339. https://doi.org/10.1007/s10658-007-9162-4
  47. Mayak S, Tirosh T, Glick BR. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42: 565-572. https://doi.org/10.1016/j.plaphy.2004.05.009
  48. Sergeeva E, Shah S, Glick BR. 2006. Growth of transgenic canola (Brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on high concentrations of salt. World J. Microbiol. Biotechnol. 22: 277-282. https://doi.org/10.1007/s11274-005-9032-1
  49. Serrano R, Culianz-Macia FA, Moreno V. 1998. Genetic engineering of salt and drought tolerance with yeast regulatory genes. Sci. Hortic. 78: 261-269. https://doi.org/10.1016/S0304-4238(98)00196-4
  50. Zhu C, Zhang G, Shen C, Chen S, Tang Y, Mei B, Song R. 2015. Expression of bacterial glutamine synthetase gene in Arabidopsis thaliana increases the plant biomass and level of nitrogen utilization. Biologia 70: 1586-1596.
  51. Barboza-Corona JE, De la Fuente-Salcido NM, Leon-Galvan MF. 2012. Future challenges and prospects of Bacillus thuringiensis. Bacillus thuringiensis Biotechnology. Springer Netherlands. 3: 367-384.
  52. Prado JR, Segers G, Voelker T, Carson D, Dobert R, Phillips J, et al. 2014. Genetically engineered crops: from idea to product. Annu. Rev. Plant Biol. 65: 769-790. https://doi.org/10.1146/annurev-arplant-050213-040039
  53. Vaughn T, Cavato T, Brar G, Coombe T, DeGooyer T, Ford S, et al. 2005. A method of controlling corn rootworm feeding using a Bacillus thuringiensis protein expressed in transgenic maize. Crop Sci. 45: 931-938. https://doi.org/10.2135/cropsci2004.0304
  54. Walters FS, Stacy CM, Lee MK, Palekar N, Chen JS. 2008. An engineered chymotrypsin/cathepsin G site in domain I renders Bacillus thuringiensis Cry3A active against western corn rootworm larvae. Appl. Environ. Microbiol. 74: 367-374. https://doi.org/10.1128/AEM.02165-07
  55. Nuutila A M, R itala A, S kadsen RW, M annonen L, Kauppinen V. 1999. Expression of fungal thermotolerant endo-1, 4-${\beta}$-glucanase in transgenic barley seeds during germination. Plant Mol. Biol. 41: 777-783. https://doi.org/10.1023/A:1006318206471
  56. Goddijn OJ, Pen J. 1995. Plants as bioreactors. Trends Biotechnol. 13: 379-387. https://doi.org/10.1016/S0167-7799(00)88985-4
  57. Sack M, Rademacher T, Spiegel H, Boes A, Hellwig S, Drossard J, et al. 2015. From gene to harvest: insights into upstream process development for the GMP production of a monoclonal antibody in transgenic tobacco plants. Plant Biotechnol. J. 13: 1094-1105. https://doi.org/10.1111/pbi.12438
  58. Haldrup A, Petersen SG, Okkels FT. 1998. Positive selection: a plant selection principle based on xylose isomerase, an enzyme used in the food industry. Plant Cell Rep. 18: 76-81. https://doi.org/10.1007/s002990050535
  59. Hood EE. 2002. From green plants to industrial enzymes. Enzyme Microbial Technol. 30: 279-283. https://doi.org/10.1016/S0141-0229(01)00502-6
  60. Schwardt E. 1990. Production and use of enzymes degrading starch and some other polysaccharides. Food Biotechnol. 4: 337-351. https://doi.org/10.1080/08905439009549746
  61. Pen J, van Ooyen AJ, van den Elzen PJ, Quax WJ, Hoekema A. 1992. Efficient production of active industrial enzymes in plants. Ind. Crops Prod. 1: 241-250. https://doi.org/10.1016/0926-6690(92)90025-Q
  62. Reddy VS, Leelavathi S, Selvapandiyan A, Raman R, Giovanni F, Shukla V, et al. 2002. Analysis of chloroplast transformed tobacco plants with cry1Ia5 under rice psbA transcriptional elements reveal high level expression of Bt toxin without imposing yield penalty stable inheritance of transplastome. Mol. Breeding 9: 259-269. https://doi.org/10.1023/A:1020357729437
  63. Longoni P, Leelavathi S, Doria E, Reddy VS, Cella R. 2015. Production by tobacco transplastomic plants of recombinant fungal and bacterial cell-wall degrading enzymes to be used for cellulosic biomass saccharification. Biomed. Res. Int. 2015: 289759.
  64. Hiatt A, Caffferkey R, Bowdish K. 1989. Production of antibodies in transgenic plants. Nature 342: 76-78. https://doi.org/10.1038/342076a0
  65. Richter LJ, Thanavala Y, Arntzen CJ, Mason HS. 2000. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat. Biotechnol. 18: 1167-1171. https://doi.org/10.1038/81153
  66. Daniell H, Streatfield SJ, Wycoff K. 2001. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci. 6: 219-226. https://doi.org/10.1016/S1360-1385(01)01922-7
  67. Stoger E, Vaquero C, Torres E, Sack M, N icholson L, Drossard J, Fischer R. 2000. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol. Biol. 42: 583-590. https://doi.org/10.1023/A:1006301519427
  68. Besufekad Y, Malaiyarsa P. 2017. Production of monoclonal antibodies in transgenic plants. J. Adv. Biol. Biotechnol. 12: 1-8.
  69. Warzecha H, Mason HS. 2003. Benefits and risks of antibody and vaccine production in transgenic plants. J. Plant Physiol. 160: 755-764. https://doi.org/10.1078/0176-1617-01125
  70. Verpoorte R, Memelink J. 2002. Engineering secondary metabolite production in plants. Curr. Opin. Biotechnol. 13: 181-187. https://doi.org/10.1016/S0958-1669(02)00308-7
  71. Dixon RA. 2001. Natural products and plant disease resistance. Nature 411: 843-847. https://doi.org/10.1038/35081178
  72. Shewmaker CK, S heehy JA, D aley M, Colbu rn S , Ke D Y. 1999. Seed?specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J. 20: 401-412. https://doi.org/10.1046/j.1365-313x.1999.00611.x
  73. Romer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, et al. 2000. Elevation of the provitamin A content of transgenic tomato plants. Nat. Biotechnol. 18: 666-669. https://doi.org/10.1038/76523
  74. Verberne MC, Verpoorte R, Bol JF, Mercado-Blanco J, Linthorst HJ. 2000. Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat. Biotechnol. 18: 779-783. https://doi.org/10.1038/77347
  75. Zook M, Hohn T, Bonnen A, Tsuji J, Hammerschmidt R. 1996. Characterization of novel sesquiterpenoid biosynthesis in tobacco expressing a fungal sesquiterpene synthase. Plant Physiol. 112: 311-318. https://doi.org/10.1104/pp.112.1.311
  76. Basu A, Roychowdhury D, Joshi RK, Jha S. 2017. Effects of cryptogein gene on growth, phenotype and secondary metabolite accumulation in co-transformed roots and plants of Tylophora indica. Acta Physiol. Plant 39: 1-3. https://doi.org/10.1007/s11738-016-2300-x
  77. Kumar M, Mitra A. 2017. Hairy Root Culture of Nicotiana tabacum (Tobacco) as a Platform for Gene Manipulation of Secondary Metabolism. pp.145-163. In Production of Plant Derived Natural Compounds through Hairy Root Culture Springer, Cham.
  78. Punja ZK. 2001. Genetic engineering of plants to enhance resistance to fungal pathogens-a review of progress and future prospects. Can. J. Plant Pathol. 23: 216-235. https://doi.org/10.1080/07060660109506935
  79. Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N. 2016. The CRISPR/Cas genome-editing tool: application in improvement of crops. Front. Plant Sci. 7: 506.
  80. Georges F, Ray H. 2017. Genome editing of crops: a renewed opportunity for food security. GM Crops Food 8: 1-12. https://doi.org/10.1080/21645698.2016.1270489
  81. Abdallah NA, Prakash CS, McHughen AG. 2015. Genome editing for crop improvement: challenges and opportunities. GM Crops Food 6: 183-205. https://doi.org/10.1080/21645698.2015.1129937
  82. Schiml S, Fauser F, Puchta H. 2014. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J. 80: 1139-1150. https://doi.org/10.1111/tpj.12704
  83. Lawrenson T, Shorinola O, Stacey N, Li C, Ostergaard L, Patron N, et al. 2015. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 16: 258. https://doi.org/10.1186/s13059-015-0826-7
  84. Svitashev S, Young J, Schwartz C, Gao H, Falco SC, Cigan AM. 2015. Targeted mutagenesis, precise gene editing and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 169: 931-945. https://doi.org/10.1104/pp.15.00793
  85. Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 1262-1278. https://doi.org/10.1016/j.cell.2014.05.010
  86. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPRCas systems. Nat. Biotechnol. 31: 233-239. https://doi.org/10.1038/nbt.2508
  87. Zhang Y, Zhang Y, Qiu D, Zeng H, Guo L, Yang X. 2015. BcGs1, a glycoprotein from Botrytis cinerea, elicits defence response and improves disease resistance host plants. Biochemical and biophysical research communications. 457: 627-634. https://doi.org/10.1016/j.bbrc.2015.01.038
  88. Liu W, Stewart CN. 2016. Plant synthetic promoters and transcription factors. Curr. Opin. Biotechnol. 37: 36-44. https://doi.org/10.1016/j.copbio.2015.10.001
  89. Scott KJ. 1994. Genetic engineering of cereals for resistance to phytopathogens. Australas Plant Pathol. 23: 154-162. https://doi.org/10.1071/APP9940154
  90. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154: 442-451. https://doi.org/10.1016/j.cell.2013.06.044
  91. Elie Dolgin. 2017. CRISPR hacks enable pinpoint repairs to genome. Nature 550:439-440 https://doi.org/10.1038/550439a
  92. Ledford H. 2018. Powerful enzyme could make CRISPR gene-editing more versatile. Nature DOI: 10.1038/d41586-018-02540-x
  93. Bortesi L, Fischer R. 2015. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 33: 41-52. https://doi.org/10.1016/j.biotechadv.2014.12.006
  94. Hu CH, Wei YR, Huang YH, Yi GJ. 2013. An efficient protocol for the production of chit42 transgenic Furenzhi banana (Musa spp. AA group) resistant to Fusarium oxysporum. In Vitro Cell Dev. Biol. Plant 49: 584-592. https://doi.org/10.1007/s11627-013-9525-9
  95. Mercado JA, Barcelo M, Pliego C, Rey M, Caballero JL, Munoz-Blanco J, et al. 2015. Expression of the ${\beta}$-1, 3-glucanase gene bgn13. 1 from Trichoderma harzianum in strawberry increases tolerance to crown rot diseases but interferes with plant growth. Transgenic Res. 24: 979-989. https://doi.org/10.1007/s11248-015-9895-3
  96. Ichikawa H, Kato K, Mochizuki A, Shinoyama H, Mitsuhara I. 2015. Transgenic Chrysanthemums (Chrysanthemum morifolium Ramat.) Carrying both Insect and Disease Resistance. In XXV International EUCARPIA Symposium Section Ornamentals: Crossing Borders 1087: 485-497.
  97. Daniell H, Lee SB, Panchal T, Wiebe PO. 2001. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts1. J. Mol. Biol. 311: 1001-1009. https://doi.org/10.1006/jmbi.2001.4921
  98. Nochi T, Takagi H, Yuki Y, Yang L, Masumura T, Mejima M, et al. 2007. Rice-based mucosal vaccine as a global strategy for cold-chain-and needle-free vaccination. Proc. Natl. Acad. Sci. USA 104: 10986-10991. https://doi.org/10.1073/pnas.0703766104
  99. Martinez CA, Topal E, Giulietti AM, Talou JR, Mason H. 2010. Exploring different strategies to express Dengue virus envelope protein in a plant system. Biotechnol. Lett. 32: 867-875. https://doi.org/10.1007/s10529-010-0236-6
  100. Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, et al. 2002. Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring t he codA gene are highly tolerant to salt stress. Theor. Appl. Genet. 106: 51-57. https://doi.org/10.1007/s00122-002-1063-5
  101. Kimura T, Mizutani T, Tanaka T, Koyama T, Sakka K, Ohmiya K. 2003. Molecular breeding of transgenic rice expressing a xylanase domain of the xynA gene from Clostridium thermocellum. Appl. Microbiol. Bbiotechnol. 62: 374-379. https://doi.org/10.1007/s00253-003-1301-z
  102. Gisbert C, Rus AM, Bolarín MC, Lopez-Coronado JM, Arrillaga I, Montesinos C, et al. 2000. The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol. 123: 393-402. https://doi.org/10.1104/pp.123.1.393
  103. Li J, Hegeman CE, Hanlon RW, Lacy GH, Denbow DM, Grabau EA. 1997. Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol. 114: 1103-1111. https://doi.org/10.1104/pp.114.3.1103
  104. Haq TA, Mason HS, Clements JD, Arntzen CJ. 1995. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268: 714-716. https://doi.org/10.1126/science.7732379
  105. Kohle A, Sommer S, Li SM, Schilde-Rentschler L, Ninnemann H, Heide L. 2003. Secondary metabolites in transgenic tobacco and potato: high accumulation of 4-hydroxybenzoic acid glucosides results from high expression of the bacterial gene ubiC. Mol. Breed. 11: 15-24. https://doi.org/10.1023/A:1022211521390
  106. Siebert M, Sommer S, Li SM, Wang ZX, Severin K, Heide L. 1996. Genetic engineering of plant secondary metabolism (accumulation of 4-hydroxybenzoate glucosides as a result of the expression of the bacterial ubic gene in tobacco). Plant Physiol. 112: 811-819. https://doi.org/10.1104/pp.112.2.811
  107. Keller H, Pamboukdjian N, Ponchet M, Poupet A, Delon R, Verrier JL, et al. 1999. Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell 11: 223-235. https://doi.org/10.1105/tpc.11.2.223
  108. Lv S, Yang A, Zhang K, Wang L, Zhang J. 2007. Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol. Breed. 20: 233-248. https://doi.org/10.1007/s11032-007-9086-x
  109. Mozes-Koch R, Gover O, Tanne E, Peretz Y, Maori E, Chernin L, et al. 2012. Expression of an entire bacterial operon in plants. Plant Physiol. 158: 1883-1892. https://doi.org/10.1104/pp.111.186197
  110. Baranski R, Klocke E, Nothnagel T. 2007. Enhancing resistance of transgenic carrot to fungal pathogens by the expression of Pseudomonas fluorescence microbial factor 3(MF3) gene. Physiol. Mol. Plant Pathol. 71: 88-95. https://doi.org/10.1016/j.pmpp.2007.12.002
  111. De Cosa B, Moar W, Lee SB, Miller M, Daniell H. 2001. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 19: 71-74. https://doi.org/10.1038/83559
  112. Hasunuma T, Miyazawa SI, Yoshimura S, Shinzaki Y, Tomizawa KI, Shindo K, et al. 2008. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J. 55: 857-868. https://doi.org/10.1111/j.1365-313X.2008.03559.x
  113. Azadi P, Otang NV, Chin DP, Nakamura I, Fujisawa M, Harada H, et al. 2010. Metabolic engineering of Lilium$\times$formolongi using multiple genes of the carotenoid biosynthesis pathway. Plant Biotechnol. Rep. 4: 269-280. https://doi.org/10.1007/s11816-010-0147-y
  114. Davoodi?Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK, et al. 2010. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol. J. 8: 223-242. https://doi.org/10.1111/j.1467-7652.2009.00479.x
  115. Shah JM, Raghupathy V, Veluthambi K. 2009. Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnol. Lett. 31: 239-244. https://doi.org/10.1007/s10529-008-9856-5
  116. Goel D, Singh AK, Yadav V, Babbar SB, Murata N, Bansal KC. 2011. Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. J. Plant Physiol. 168: 1286-1294. https://doi.org/10.1016/j.jplph.2011.01.010
  117. Wang L, Samac DA, Shapir N, Wackett LP, Vance CP, Olszewski NE, et al. 2005. Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene. Plant Biotechnol. J. 3: 475-486. https://doi.org/10.1111/j.1467-7652.2005.00138.x