DOI QR코드

DOI QR Code

산불 훼손 복원지 내 토양개량제 처리가 Wood stakes의 탄소 및 질소 동태에 미치는 영향

Carbon and Nitrogen Dynamics of Wood Stakes as Affected by Soil Amendment Treatments in a Post-Fire Restoration Area

  • 박성완 (경남과학기술대학교 산림자원학과) ;
  • 백경원 (경남과학기술대학교 산림자원학과) ;
  • 변희섭 (경상대학교 농업생명과학연구원 환경재료과학과) ;
  • 김용석 (국립산림과학원 산림보전복원연구과) ;
  • 김춘식 (경남과학기술대학교 산림자원학과)
  • Park, Seong-Wan (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Baek, Gyeongwon (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Byeon, Hee-Seop (Department of Environmental Materials Science, Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Kim, Yong Suk (Division of Forest Conservation and Restoration, National Institute of Forest Science) ;
  • Kim, Choonsig (Department of Forest Resources, Gyeongnam National University of Science and Technology)
  • 투고 : 2018.07.05
  • 심사 : 2018.10.12
  • 발행 : 2018.12.30

초록

본 연구는 울산광역시 봉대산 산불 훼손 복원지를 대상으로 토양개량제 처리가 토양층에 매설된 wood stakes의 분해율과 유기 탄소 및 질소 동태에 미치는 영향을 조사하기 위하여 실시하였다. 산불 훼손 복원지에 식재된 튤립나무, 상수리나무, 왕벚나무, 곰솔 조림지와 미복원지를 대상으로 2015년 3월 토양 0~15cm 깊이에 wood stakes를 매설한 후, 2년 동안 각 1회씩 토양개량제(CLB: 복합비료 + 석회 + 목탄 처리구; LB: 석회 + 목탄 처리구)를 처리하고, 2015년 10월, 2016년 3월, 2016년 10월 채취하여 분해율과 유기탄소 및 질소 농도를 조사하였다. Wood stakes 분해율의 경우 토양개량제 처리구와 대조구 사이에 유의적인 차이는 없었으나, 유기 탄소 잔존율의 경우 대조구(43.7%), CLB처리구(71.3%), LB처리구(71.6%) 순으로 토양개량제 처리구의 탄소 무기화가 대조구에 비해 낮게 나타났다. Wood stakes 내 질소 잔존율의 경우도 대조구가 29.7%로 LB처리구 52.6%에 비해 낮아 탄소 무기화율과 유사한 경향을 보였다. 본 연구결과에 따르면 산불 훼손 복원지에 토양개량제 처리는 wood stakes의 탄소 및 질소 무기화를 지연하는 것으로 나타났다.

This study was carried out to evaluate the weight loss rates, carbon and nitrogen dynamics of wood stakes following soil amendment treatments (CLB: compound fertilizer + lime + biochar; LB: lime + biochar) in a post-fire restoration area, Ulsan Metropolitan city, southern Korea. Soil amendments in the fire-disturbed area were applied to two-times (Mar. and Jun. 2015, 2016) during the study period. Wood stakes on Mar. 2015 were buried at a top 15cm of mineral soil in two soil amendment and control treatments of Liriodendron tulipifera, Prunus yedoensis, Quercus acutissima, Pinus thunbergii plantations and an unplanted area in the post-fire restoration area. Wood stakes were collected at Oct. 2015, Mar. 2016 and Oct. 2016 to measure weight loss rates, organic carbon and nitrogen concentrations. Weight loss rates of wood stakes were not significantly affected by soil amendment treatments. However, remaining carbon of wood stakes were lowest in the control treatment (43.7%), followed by the CLB (71.3%) and the LB (71.6%) treatments. Remaining nitrogen of wood stakes was less in the control treatment (29.7%) compared with the LB treatment (52.6%). The results indicate that carbon and nitrogen mineralization of wood stakes in post-fire restoration area were delayed by soil amendment treatments.

키워드

NRGSBM_2018_v20n4_357_f0001.png 이미지

Fig. 1. Location of the study site in a post-fire restoration area of Mt. Bongdaesan (a: Unplanted area; b: Prunus yedoensis plantation; c: Quercus acutissima plantation; d: Pinus thunbergii plantation; e: Liriodendron tulipifera plantation; f: wood stakes after seven month’s incubation at top 15cm soil).

NRGSBM_2018_v20n4_357_f0002.png 이미지

Fig. 2. Soil property changes (a: soil water content; b: soil temperature; c: soil pH; d: soil EC; e: organic carbon; f: total nitrogen; g: available phosphorus; h: soil CO2 efflux rates) following soil amendment treatments (C: Control, CLB: Compound fertilizers + Lime + Biochar, LB: Lime + Biochar) in a post-fire restoration area. Vertical bars represent one standard error. The same letters among treatments in each sampling time indicate no significant difference at P < 0.05.

NRGSBM_2018_v20n4_357_f0003.png 이미지

Fig. 3. Remaining weight (a), carbon (b) and nitrogen (c) concentration, C/N ratio (d), remaining carbon (e) and nitrogen (f) of wood stakes following soil amendment treatments (C: Control, CLB: Compound fertilizers + Lime + Biochar, LB: Lime + Biochar) in a post-fire restoration area. Vertical bars represent one standard error.

Table 1. Stand characteristics in soil amendment treatment plots of a post-fire restoration area

NRGSBM_2018_v20n4_357_t0001.png 이미지

Table 2. P-value of soil property changes following soil amendment treatments in a post-fire restoration area

NRGSBM_2018_v20n4_357_t0002.png 이미지

참고문헌

  1. Bravo-Oviedo, A., R. Ruiz-Peinado, R. Onrubia, and M. del Rio, 2017: Thinning alters the earlydecomposition rate and nutrient immobilizationrelease pattern of foliar litter in Mediterranean oak-pine mixed stand. Forest Ecology and Management 391, 309-320. https://doi.org/10.1016/j.foreco.2017.02.032
  2. Chao, K. J., Y. S. Chen, G. M. Song, Y. M. Chang, C. R. Sheue, O. L. Phillips, and C. F. Hsieh, 2017: Carbon concentration declines with decay class in tropical forest woody debris. Forest Ecology and Management 391, 75-85. https://doi.org/10.1016/j.foreco.2017.01.020
  3. Drewnik, M., 2006: The effect of environmental conditions on the decomposition rate of cellulose in mountain soils. Geoderma 132, 116-130. https://doi.org/10.1016/j.geoderma.2005.04.023
  4. Finer, L., M. F. Jurgensen, M. Palviainen, S. Piirainen, and D. S. Page-Dumroese, 2016: Does clear-cut harvesting accelerate initial wood decomposition? A five-year study with standard wood material. Forest Ecology and Management 372, 10-18. https://doi.org/10.1016/j.foreco.2016.03.060
  5. Horodecki, P., and A. M. Jagodzinski, 2017: Tree species effects on litter decomposition in pure stands on afforested post-mining sites. Forest Ecology and Management 406, 1-11. https://doi.org/10.1016/j.foreco.2017.09.059
  6. Jeong, J., N. Bolan, and C. Kim, 2016: Heterotrophic soil respiration affected by compound fertilizer types in red pine (Pinus densiflora S. et Z.) stands of Korea. Forests 7, 309pp. https://doi.org/10.3390/f7120309
  7. Jeong, J., C. G. Jo, G. W. Baek, J. H. Park, H. S. Ma, B. O. Yoo, and C. Kim, 2017: Soil and the foliage nutrient status following soil amendment applications in a Japanese cypress (Chamaecyparis obtusa Endlicher) plantation. Journal of Sustainable Forestry 36(3), 289-303. https://doi.org/10.1080/10549811.2017.1296778
  8. Jurgensen, M., D. Reed, D. S. Page-Dumroese, P. Laks, A. Collins, G. Mroz, and M. Degorski, 2006: Wood strength loss as a measure of decomposition in northern forest mineral soil. European Journal of Soil Biology 42(1), 23-31. https://doi.org/10.1016/j.ejsobi.2005.09.001
  9. Kim, C., 2000: Canopy cover effects on cellulose decomposition in oak and pine stands. Journal of Forest Research 5, 145-149. https://doi.org/10.1007/BF02762393
  10. Kim, Y. S., J. K. Byun, C. Kim, B. B. Park, Y. K. Kim, and S. W. Bae, 2014: Growth response of Pinus densiflora seedlings to different fertilizer compound ratios in a recently burned area in the eastern coast of Korea. Landscape Ecological and Engineering 10, 241-247. https://doi.org/10.1007/s11355-012-0208-1
  11. Kim, C., J. Jeong, J. H. Park, and H. S. Ma, 2015: Growth and nutrient status of foliage as affected by tree species and fertilization in a fire-disturbed urban forest. Forests 6(6), 2199-2213. https://doi.org/10.3390/f6062199
  12. KMA (Korea Meteorological Administration), 2011: Climatological Normals of Korea. 679pp.
  13. Risch, A. C., M. F. Jurgensen, D. S. Page-Dumroese, and M. Schutz, 2013: Initial turnover rates of two standard wood substrates following land-use change in subalpine ecosystem in the Swiss Alps. Canadian Journal of Forest Research 43(10), 901-910. https://doi.org/10.1139/cjfr-2013-0109
  14. Tu, L., L. Hu, G. Chen, Y. Peng, Y. Xiao, T. Hu, J. Zhang, X. Li, and Y. Tang, 2014: Nitrogen addition significantly affects forest litter decomposition under high levels of ambient nitrogen deposition. PlosOne 9, e88752. https://doi.org/10.1371/journal.pone.0088752
  15. Ulyshen, M. D., R. Shefferson, S. Horn, M. K. Taylor, B. Bush, C. Brownie, S. Seibold, and M. S. Strickland, 2017: Below-and above-ground effects of deadwood and termites in plantation forests. Ecosphere 8(8), e01910. https://doi.org/10.1002/ecs2.1910
  16. Wambsganss, J., K. P. Stutz, and F. Lang, 2017: European beech deadwood can increase soil organic carbon sequestration in forest topsoils. Forest Ecology and Management 405, 200-209. https://doi.org/10.1016/j.foreco.2017.08.053
  17. Wang, X., D. S. Page-Dumroese, M. F. Jurgensen, and R. J. Ross, 2007: Field assessment of wood stake decomposition in forest soil. Holzforschung 61(5), 605-610. https://doi.org/10.1515/HF.2007.072
  18. Weedon, J. T., W. K. Cornwell, J. H. C. Cornelissen, A. E. Zanne, C. Wirth, and D. A. Coomes, 2009: Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecology Letters 12(1), 45-56. https://doi.org/10.1111/j.1461-0248.2008.01259.x
  19. Weil, R. R., and N. C. Brady. 2017: The Nature and Properties of Soils. Pearson, USA.
  20. Wu, C., Z. Zhang, H. Wang, C. Li, Q. Mo, and Y. Liu, 2018: Photodegradation accelerates coarse woody debris decomposition in subtropical Chinese forests. Forest Ecology and Management 409, 225-232. https://doi.org/10.1016/j.foreco.2017.10.060
  21. Yatskov, M., M. E. Harmon, and O. N. Krankina, 2003: A chronosequence of wood decomposition in the boreal forests of Russia. Canadian Journal of Forest Research 33(7), 1211-1226. https://doi.org/10.1139/x03-033
  22. Yoo, J. H., J. K. Byun, C. Kim, C. H. Lee, Y. K. Kim, and W. K. Lee, 1998: Effects of lime, magnesium sulfate, and compound fertilizers on soil chemical properties of acidified forest soils. Journal of Korean Forestry Society 87(3), 341-346.
  23. Yoo, J. H., M. J. Yi, Y. K. Kim, C. H. lee, J. K. Byun, S. W. Lee, and C. Kim, 2002: Throughfall and stemflow chemistry of coniferous and deciduous stands in Seoul, Ulsan and Hongcheon regions. Journal of Korean Forestry Society 91(1), 102-110.