DOI QR코드

DOI QR Code

An Experimental Study for the Hydraulic Characteristics of Vertical lift Gates with Sediment Transport

퇴적토 배출을 수반한 연직수문의 수리특성에 관한 실험적 연구

  • 최승제 ((주)화신엔지니어링) ;
  • 이지행 (상지대학교 일반대학원) ;
  • 최흥식 (상지대학교 건설시스템공학과)
  • Received : 2018.11.28
  • Accepted : 2018.12.10
  • Published : 2018.12.31

Abstract

In order to analyze hydraulic characteristics of discharge coefficient, hydraulic jump height, and hydraulic jump length, accompanied sediment transport, in the under-flow type vertical lift gate, the hydraulic model experiment and dimensional analysis were performed. The correlations between Froude number and hydraulic characteristics were schematized according to the presence and absence of sediment transport; the correlation of hydraulic characteristics and non-dimensional parameters was analyzed and multiple regression formulae were developed. In the hydraulic characteristics accompanied the sediment transport, by identifying the aspect different from the case that the sediment transport is absent, we verified that it is necessary to introduce variables that can express the characteristics of sediment transport. The multiple regression equations were suggested and each determination coefficient appeared high as 0.749 for discharge coefficient, 0.896 for hydraulic jump height, and 0.955 for hydraulic jump length. In order to evaluate the applicability of the developed hydraulic characteristic equations, 95% prediction interval analysis was conducted on the measured and the calculated by regression equations, and it was determined that NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square), and MAPE (mean absolute percentage error) are appropriate, for the accuracy analysis related to the prediction on hydraulic characteristics of discharge coefficient, hydraulic jump height and length.

하단배출 형태의 연직수문에서의 퇴적토사 이동을 수반한 유량계수, 수력도약 높이, 수력도약 길이의 수리특성을 분석하기 위해 수리 모형실험과 차원해석을 수행하였다. Froude 수와 수리특성의 상관관계를 퇴적토 이동 유무에 따라 도식화하고, 무차원 매개변수와 수리특성의 상관성을 분석하고 다중회귀분석식을 개발하였다. 퇴사의 이동을 수반한 수리특성은 퇴적토의 이동이 없을 경우와는 다른 양상을 확인하여 퇴적토 이동을 특성을 나타낼 수 있는 변수의 도입이 필요함을 확인하였다. 유량계수, 수력도약 높이와 수력도약 길이에 대한 각 다중회귀분석식의 결정계수는 유량계수 0.749, 수력도약 높이 0.896, 수력도약 길이 0.955로 높게 나타났다. 개발한 수리특성식의 적용성을 평가하기 위해 실제 측정값과 회귀분석식에 의해 계산된 값의 95%의 예측구간 분석을 수행하였고, 유량계수, 수력도약 높이와 길이에 대한 예측의 정확도 분석차원의 NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square)와 MAPE (mean absolute percentage error)는 적절한 것으로 판단되었다.

Keywords

OOSTBJ_2018_v5n4_246_f0001.png 이미지

Fig. 1. Photo of sluice gate installed in the channel.

OOSTBJ_2018_v5n4_246_f0002.png 이미지

Fig. 2. Configuration of experimental system.

OOSTBJ_2018_v5n4_246_f0003.png 이미지

Fig. 3. Sluice gate installation and the corresponding scheme of measuring points (1st and 2nd experiment).

OOSTBJ_2018_v5n4_246_f0004.png 이미지

Fig. 4. Variation of discharge coefficient against Froude number.

OOSTBJ_2018_v5n4_246_f0005.png 이미지

Fig. 5. Variation of sediment transport weight ratio (Qs / (y33ρ)) against Froude number.

OOSTBJ_2018_v5n4_246_f0006.png 이미지

Fig. 6. Variation of hydraulic jump height ratio (hj / y3) against Froude number.

OOSTBJ_2018_v5n4_246_f0007.png 이미지

Fig. 7. Variation of hydraulic jump length ratio (Lj / y3) against Froude number.

OOSTBJ_2018_v5n4_246_f0008.png 이미지

Fig. 8. Analyses of 95% prediction interval for the calculated of hydraulic characteristics.

Table 1. Experimental conditions

OOSTBJ_2018_v5n4_246_t0001.png 이미지

Table 2. Multiple regression analysis results

OOSTBJ_2018_v5n4_246_t0002.png 이미지

Table 3. Results in the analysis of variance

OOSTBJ_2018_v5n4_246_t0003.png 이미지

Table 4. VIF values for determining the multicollinearity of the independent variable

OOSTBJ_2018_v5n4_246_t0004.png 이미지

References

  1. Ahn, J.M. and Lyu, S. 2013. A study on the effect of dredging and operation of weirs on hydraulic characteristics in Nakdong River. Journal of the Korean Society of Civil Engineers 33(5): 1829-1840. (in Korean) https://doi.org/10.12652/Ksce.2013.33.5.1829
  2. Aher, P.D. and Sharma, H.C. 2014. Morphometric characterisation of gagar watershed in Kumaon region of Uttarakhand for management planning: a GIS approach. Agricultural Science Digest 34(3): 163-170. https://doi.org/10.5958/0976-0547.2014.00995.1
  3. Bakhmeteff, B.A. and Matzke, A.E. 1979. Classical hydraulic jump: sequent depths. J. Mech. Eng., ASME 60(2): 565-585.
  4. Cassan, L. and Belaud, G. 2011. Experimental and numerical investigation of flow under sluice gates. Journal of Hydraulic Engineering 138(4): 367-373.
  5. Choi, Y.H., Lee, J.H. and Choi, H.S. 2016. Discharge Calculation of Under Flow through Vertical Lift Weir. Journal of Korean Society of Hazard Mitigation 16(5): 333-339. (in Korean) https://doi.org/10.9798/KOSHAM.2016.16.5.333
  6. Ham, H.B. 2007. Data Analysis and SAS Programming, Vol. 328. (in Korean)
  7. Hayawi, H.A. and Mohammed, A.Y. 2011. Properties of Hydraulic Jump Down Stream Sluice Gate. Research Journal of Applied Sciences, Engineering and Technology, 3(2): 81-83.
  8. Jung, J.K. 2011. An experimental study for estimation of bed protection length. Journal of Wetlands Research 13(3): 677-686. (in Korean) https://doi.org/10.17663/JWR.2011.13.3.677
  9. Nash, J.E. and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models Part I - A discussion of principles. Journal of hydrology 10(3): 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  10. Oskuyi, N.N. and Salmasi, F. 2012. Vertical sluice gate discharge coefficient. Journal of Civil Engineering and Urbanism 2(3): 108-114.
  11. Park, H.S., Yoon, G.H., Koo, B.J. and Choi, G.W. 2013. A Comparative Study on Hydraulic Jump and Specific Energy Losses at Downstream According to the Weir Discharge Types. Journal of Wetlands Research 15(1): 149-157. (in Korean) https://doi.org/10.17663/JWR.2013.15.1.149
  12. Rajaratnam, N. and Subramanya, K. 1967. Flow equation for the sluice gate. Journal of the Irrigation and Drainage Division 93(3): 167-186.
  13. Razi, M., Adib, M., Tjahjanto, D., Mohamed, W., Afnizan, W. and Ishak, N.B. 2008. Investigation of the properties of flow beneath a sluice gate.
  14. Shayan, H.K., Farhoudi, J. and Roshan, R. 2014. Estimation of flow discharge under the sluice and radial gates based on contraction coefficient. Iranian Journal of Science and Technology. Transactions of Civil Engineering 38(C2): 449-463.
  15. Yen, J.F., Lin, C.H. and Tsai, C.T. 2001. Hydraulic characteristics and discharge control of sluice gates. Journal of the Chinese institute of engineers 24(3): 301-310. https://doi.org/10.1080/02533839.2001.9670628