그림 1. 게임 시스템의 주요 구성 Fig. 1. Structure of game system
그림 2. Neural Network의 구성 Fig. 2. Structure of neural network
그림 3. Haar filter의 예시 Fig. 3. Example of Haar filter
그림 4. Haar training의 과정 Fig. 4. Process of Haar Training
그림 5. 학습된 데이터가 저장된 xml Fig. 5. xml of learned data
그림 6. 얼굴인식 과정 Fig. 6. Flow of face image recognition
그림 7. 얼굴 추적과 감정분석 Fig. 7. Face tracing and emotion analysis
그림 8. 실험 환경 Fig. 8. Testing environment
그림 9. 포커게임의 진행 Fig. 9. Example of game screen
그림 10. AI vs 허군 Fig. 10. AI vs Mr Hur
그림 11. AI vs 조군 Fig. 11. AI vs Mr Cho
표 1. 게임 실험 결과 Table 1. Test outcomes
참고문헌
- Keon-Jun Park, Yong-Kab Kim, Geun-Chang Hoang, "Design of Fuzzy Neural Networks Based on Fuzzy Clustring with Uncertainty", The Journal of the Institute of Internet, Broadcasting and Communication::, Vol.17 No.1 (2017) pp. 173-181 DOI: https://doi.org/10.7236/JIIBC.2017.17.1.173
- Poker, Wikipedia. Retrieved at https://en.wikipedia.org/wiki/Poker on Sep. 28, 2018.
- Greg Walker, "Poker Winrates: Can You Afford Not To Use Poker Tracker 4?," The Poker Bank. Retrieved at http://www.thepokerbank.com/strategy/other/win rate/ on Sep, 28, 2018.
- Hyoung-Keun Park and Sun-Youb Kim, "A Study on the Non-linear Prediction Algorithm using Multi-layer Neural Network", Korea Academia-Industrial cooperation Society pp.155-158, 2007 Fall Conference.
- TensorFlow, Google. Retrieved at https://www.tensorflow.org on Sep. 20, 2018.
- Keras Document. Retrieved at https://keras.io/OpencvDocument, https://docs.opencv.org/3.4.0/index.html on Sep. 20, 2018.
- Gil-Jin Jang, Ahra Jo, Jeong-Sik Park, Yong-Ho Seo, "Video-based Facial Emotion Recognition using Active Shape Models and StatisticalPattern Recognizers," Iternational Journal of Internet, Broadcasting and Communication (IJIBC), Vol. 14 No. 3, June 2014, pp. 139-146.
- Visual Studio, Microsoft. Retrieved at https://visualstudio.microsoft.com on Sep. 20, 2018.
- PyCharm, JetBrains. Retreived at https://www.jetbrains.com/pycharm on September 20, 2018.
- Microsoft Azure Document, Microsoft . Retrieved at https://azure.microsoft.com/ko-kr/try/cognitive-s ervices/?api=emotion-api on Sep. 20, 2018.
- Tutorial: OpenCV haartraining (Rapid Object Detection With A Cascade of Boosted Classifiers Based on Haar-like Features), Naotoshi Seo, Retrieved at http://note.sonots.com/SciSoftware/haartraining.ht ml#x15ebd98 on Sep. 28, 2018.
- OpenCV: Meanshift and Camshift. Rerieved at https://docs.opencv.org/3.1.0/db/df8/tutorial_py_m eanshift.html on Sep. 28, 2018.