DOI QR코드

DOI QR Code

Effects of Paroxetine on a Human Ether-a-go-go-related Gene (hERG) K+ Channel Expressed in Xenopus Oocytes and on Cardiac Action Potential

  • Hong, Hee-Kyung (Department of Physiology, Kangwon National University Institute of Bioscience & Biotechnology, BK21 plus Graduate Program, Kangwon National University College of Medicine) ;
  • Hwang, Soobeen (Department of Physiology, Kangwon National University Institute of Bioscience & Biotechnology, BK21 plus Graduate Program, Kangwon National University College of Medicine) ;
  • Jo, Su-Hyun (Department of Physiology, Kangwon National University Institute of Bioscience & Biotechnology, BK21 plus Graduate Program, Kangwon National University College of Medicine)
  • 투고 : 2018.03.13
  • 심사 : 2018.03.19
  • 발행 : 2018.03.31

초록

$K^+$ channels are key components of the primary and secondary basolateral $Cl^-$ pump systems, which are important for secretion from the salivary glands. Paroxetine is a selective serotonin reuptake inhibitor (SSRI) for psychiatric disorders that can induce QT prolongation, which may lead to torsades de pointes. We studied the effects of paroxetine on a human $K^+$ channel, human ether-a-go-go-related gene (hERG), expressed in Xenopus oocytes and on action potential in guinea pig ventricular myocytes. The hERG encodes the pore-forming subunits of the rapidly-activating delayed rectifier $K^+$ channel ($I_{Kr}$) in the heart. Mutations in hERG reduce $I_{Kr}$ and cause type 2 long QT syndrome (LQT2), a disorder that predisposes individuals to life-threatening arrhythmias. Paroxetine induced concentration-dependent decreases in the current amplitude at the end of the voltage steps and hERG tail currents. The inhibition was concentration-dependent and time-dependent, but voltage-independent during each voltage pulse. In guinea pig ventricular myocytes held at $36^{\circ}C$, treatment with $0.4{\mu}M$ paroxetine for 5 min decreased the action potential duration at 90% of repolarization ($APD_{90}$) by 4.3%. Our results suggest that paroxetine is a blocker of the hERG channels, providing a molecular mechanism for the arrhythmogenic side effects of clinical administration of paroxetine.

키워드

참고문헌

  1. Thase ME, Tran PV, Wiltse C, Pangallo BA, Mallinckrodt C and Detke MJ. Cardiovascular profile of duloxetine, a dual reuptake inhibitor of serotonin and norepinephrine. J Clin Psychopharmacol. 2005;25:132-140. doi: 10.1097/01.jcp.0000155815.44338.95.
  2. Anderson IM. Selective serotonin reuptake inhibitors versus tricyclic antidepressants: a meta-analysis of efficacy and tolerability. J Affect Disord. 2000;58:19-36. doi:10.1016/S0165-0327(99)00092-0.
  3. Barbey JT and Roose SP. SSRI safety in overdose. J Clin Psychiatry. 1998;59:42-48.
  4. Jiang W and Davidson JR. Antidepressant therapy in patients with ischemic heart disease. Am Heart J. 2005;150:871-881. doi: 10.1016/j.ahj.2005.01.041.
  5. Kobayashi T, Washiyama K and Ikeda K. Inhibition of G protein-activated inwardly rectifying K+ channels by the antidepressant paroxetine. J Pharmacol Sci. 2006;10:278-287. doi: 10.1254/jphs.FP0060708.
  6. Goryachkina K, Burbello A, Boldueva S, Babak S, Bergman U and Bertilsson L. Inhibition of metoprolol metabolism and potentiation of its effects by paroxetine in routinely treated patients with acute myocardial infarction (AMI). Eur J Clin Pharmacol. 2008;64:275-282. Doi:10.1007/s00228-007-0404-3.
  7. Catalan MA, Pena-Munzenmayer G and Melvin JE. $Ca^{2+}$-dependent $K^{+}$ channels in exocrine salivary glands. Cell Calcium. 2014;55:362-368. doi:10.1016/j.ceca.2014.01.005.
  8. Warmke JW and Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci U S A. 1994;91:3438-3442. doi:10.1073/pnas.91.8.3438.
  9. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED and Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80:795-803. doi:10.1016/0092-8674(95)90358-5.
  10. Sanguinetti MC, Jiang C, Curran ME and Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell. 1995;81:299-307. dio:10.1016/0092-8674(95)90340-2.
  11. Yeragani VK, Pohl R, Jampala VC, Balon R, Ramesh C and Srinivasan K. Effects of nortriptyline and paroxetine on QT variability in patients with panic disorder. Depress Anxiety. 2000;11:126-130. https://doi.org/10.1002/(SICI)1520-6394(2000)11:3<126::AID-DA7>3.0.CO;2-1
  12. Sanchez-Chapula JA, Navarro-Polanco RA, Culberson C, Chen J and Sanguinetti MC. Molecular determinants of voltage-dependent human ether-a-go-go related gene (HERG) K+ channel block. J Biol Chem. 2002;277:23587-23595. doi: 10.1074/jbc.M200448200.
  13. Tu DN, Zou AR, Liao YH, Du YM, Wang XP and Li L. Blockade of the human ether-a-go-go-related gene potassium channel by ketanserin. Sheng Li Xue Bao. 2008;60:525-534.
  14. Sala M, Vicentini A, Brambilla P, Montomoli C, Jogia JR, Caverzasi E, Bonzano A, Piccinelli M, Barale F and De Ferrari GM. QT interval prolongation related to psychoactive drug treatment: a comparison of monotherapy versus polytherapy. Ann Gen Psychiatry. 2005;4:1. doi:10.1186/1744-859X-4-1.
  15. Roose SP, Laghrissi-Thode F, Kennedy JS, Nelson JC, Bigger JT Jr, Pollock BG, Gaffney A, Narayan M, Finkel MS, McCafferty J and Gergel I. Comparison of paroxetine and nortriptyline in depressed patients with ischemic heart disease. JAMA. 1998;279:287-291. doi:10.1001/jama.279.4.287.
  16. Choi SY, Koh YS and Jo SH. Inhibition of Human ether-a-go-go-Related Gene K+ Channel and IKr of Guinea Pig Cardiomyocytes by Antipsychotic Drug Trifluoperazine. J Pharmacol Exp Ther. 2005;313:888-895. doi:10.1124/jpet.104.080853.
  17. Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA and January CT. Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J. 1998;74:230-241. doi:10.1016/S0006-3495(98)77782-77783.
  18. Mitcheson JS, Chen J, Lin M, Culberson C and Sanguinetti MC. A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci U S A. 2000;97:12329-12333. doi: 10.1073/pnas.210244497.
  19. Ferrer-Villada T, Navarro-Polanco RA, Rodriguez-Menchaca AA, Benavides-Haro DE and Sanchez-Chapula JA. Inhibition of cardiac HERG potassium channels by antidepressant maprotiline. Eur J Pharmacol. 2006;531:1-8. doi:10.1016/j.ejphar.2005.10.036.
  20. Baldessarini RJ. Drugs and the treatment of psychiatric disorders: depression and anxiety disorders. In: Harman JG, Limbird LE, Gilman AG (eds). Goodman Gilman's The Pharmacological Basis of Therapeutics, 10th edn. McGraw-Hill, New York. 2001;447-483.
  21. Krapivinsky G, Krapivinsky L, Velimirovic B, Wickman K, Navarro B and Clapham DE. The Cardiac Inward Rectifier K+ Channel Subunit, CIR, Does Not Comprise the ATP-sensitive K+ Channel, $I_{KATP}$. J Biol Chem. 1995;270:28777-28779. doi: 10.1074/jbc.270.48.28777.
  22. Welch R and Chue P. Antipsychotic agents and QT changes. J Psychiatry Neurosci. 2000;25:154-160.
  23. Scherer D, Hassel D, Bloehs R, Zitron E, von Löwenstern K, Seyler C, Thomas D, Konrad F, Bürgers HF, Seemann G, Rottbauer W, Katus HA, Karle CA and Scholz EP. Selective noradrenaline reuptake inhibitor atomoxetine directly blocks hERG currents. Br J Pharmacol. 2009;156:226-236. doi:10.1111/j.1476-5381.2008.00018.x.
  24. Huang CJ, Harootunian A, Maher MP, Quan C, Raj CD, McCormack K, Numann R, Negulescu PA and Gonzalez JE. Characterization of voltage-gated sodium-channel blockers by electrical stimulation and fluorescence detection of membrane potential. Nature Biotechnology. 2006;24:439-446. doi:10.1038/nbt1194.