DOI QR코드

DOI QR Code

A Review Study on Ozone Phytotoxicity Metrics for Setting Critical Levels in Asia

  • Agathokleous, Evgenios (Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization) ;
  • Kitao, Mitsutoshi (Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization) ;
  • Kinose, Yoshiyuki (College of Agriculture, Ibaraki University)
  • Received : 2017.06.09
  • Accepted : 2017.08.29
  • Published : 2018.03.31

Abstract

Ground-level ozone ($O_3$) can be a menace for vegetation, especially in Asia where $O_3$ levels have been dramatically increased over the past decades. To ensure food security and maintain forest ecosystem services, such as nutrient cycling, carbon sequestration and functional diversity of soil biota, in the over-populated Asia, environmental standards are needed. To set proper standards, dose-response relationships should be established from which critical levels are derived. The predictor of the response in the dose-response relationship is an $O_3$ metric that indicates the dose level to which the plant has been exposed. This study aimed to review the relevant scientific literature and summarize the $O_3$ metrics used worldwide to provide insights for Asia. A variety of $O_3$ metrics have been used, for which we discuss their strengths and weaknesses. The most widely used metrics are based only on $O_3$ levels. Such metrics have been adopted by several regulatory agencies in the global. However, they are biologically irrelevant because they ignore the plant physiological capacity. Adopting AOT40 ($O_3$ mixing ratios Accumulated Over the Threshold of $40nmol\;mol^{-1}$) as the default index for setting critical levels in Asia would be a poor policy with severe consequences at national and Pan-Asian level. Asian studies should focus on flux-based $O_3$ metrics to provide relevant bases for developing proper standards. However, given the technical requirements in calculating flux-based $O_3$ metrics, which can be an important limitation in developing countries, no-threshold cumulative exposure indices like AOT0 should always accompany flux-based indices.

Keywords

References

  1. Agathokleous, E., Saitanis, C.J., Burkey, K.O., Ntatsi, G., Vougeleka, V., Mashaheet, A.M., Pallides, A. (2017) Application and further characterization of the snap bean S156/R123 ozone biomonitoring system in relation to ambient air temperature. Science of The Total Environment 580, 1046-1055. doi:10.1016/j.scitotenv.2016.12.059
  2. Agathokleous, E., Saitanis, C.J., Koike, T. (2015) Tropospheric $O_3$, the nightmare of wild plants: A review study. Journal of Agricultural Meteorology 71, 142-152. doi:10.2480/agrmet.D-14-00008
  3. Agathokleous, E., Saitanis, C.J., Wang, X., Watanabe, M., Koike, T. (2016) A review study on past 40 years of research on effects of tropospheric $O_3$ on belowground structure, functioning, and processes of trees: a linkage with potential ecological implications. Water, Air, & Soil Pollution 227, 33. doi:10.1007/s11270-015-2715-9
  4. Akimoto, H. (2003) Global air quality and pollution. Science 302.
  5. Alexou, M. (2013) Development-specific responses to drought stress in Aleppo pine (Pinus halepensis Mill.) seedlings. Tree Physiology 33, 1030-1042. doi:10.1093/treephys/tpt084
  6. Anav, A., De Marco, A., Proietti, C., Alessandri, A., Dell'Aquila, A., Cionni, I., Friedlingstein, P., Khvorostyanov, D., Menut, L., Paoletti, E., Sicard, P., Sitch, S., Vitale, M. (2016) Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. Global Change Biology 22, 1608-1627. doi:10.1111/gcb.13138
  7. Ashmore, M.R. (2005) Assessing the future global impacts of ozone on vegetation. Plant, Cell and Environment 28, 949-964. doi:10.1111/j.1365-3040.2005.01341.x
  8. Avnery, S., Mauzerall, D.L., Liu, J., Horowitz, L.W. (2011) Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment 45, 2284-2296. doi:10.1016/j.atmosenv.2010.11.045
  9. Azuchi, F., Kinose, Y., Matsumura, T., Kanomata, T., Uehara, Y., Kobayashi, A., Yamaguchi, M., Izuta, T. (2014) Modeling stomatal conductance and ozone uptake of Fagus crenata grown under different nitrogen loads. Environmental Pollution 184, 481-487. doi: 10.1016/j.envpol.2013.09.025
  10. Bagard, M., Jolivet, Y., Hasenfratz-Sauder, M.-P., Gerard, J., Dizengremel, P., Le Thiec, D. (2015) Ozone exposure and flux-based response functions for photosynthetic traits in wheat, maize and poplar. Environmental Pollution 206, 411-420. doi:10.1016/j.envpol.2015.07.046
  11. Ball, J.T., Woodrow, I.E., Berry, J.A. (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in: Progress in Photosynthesis Research. Springer Netherlands, Dordrecht, pp. 221-224. doi:10.1007/978-94-017-0519-6_48
  12. Broberg, M.C., Feng, Z., Xin, Y., Pleijel, H. (2015) Ozone effects on wheat grain quality - A summary. Environmental Pollution 197, 203-213. doi:10.1016/j.envpol.2014.12.009
  13. Buker, P., Feng, Z., Uddling, J., Briolat, A., Alonso, R., Braun, S., Elvira, S., Gerosa, G., Karlsson, P.E., Le Thiec, D., Marzuoli, R., Mills, G., Oksanen, E., Wieser, G., Wilkinson, M., Emberson, L.D. (2015) New flux based dose-response relationships for ozone for European forest tree species. Environmental Pollution 206, 163-174. doi:10.1016/j.envpol.2015.06.033
  14. Butt, N., Possingham, H.P., De Los Rios, C., Maggini, R., Fuller, R.A., Maxwell, S.L., Watson, J.E.M. (2016) Challenges in assessing the vulnerability of species to climate change to inform conservation actions. Biological Conservation 199, 10-15. doi:10.1016/j.biocon.2016.04.020
  15. Calvete-Sogo, H., Gonzalez-Fernandez, I., Garcia-Gomez, H., Alonso, R., Elvira, S., Sanz, J., Bermejo-Bermejo, V. (2017) Developing ozone critical levels for multispecies canopies of Mediterranean annual pastures. Environmental Pollution 220, 186-195. doi:10.1016/j.envpol.2016.09.038
  16. Cape, J.N. (2008) Surface ozone concentrations and ecosystem health: past trends and a guide to future projections. Science of the Total Environment 400, 257-269. doi:10.1016/j.scitotenv.2008.06.025
  17. Cassimiro, J.C., Moura, B.B., Alonso, R., Meirelles, S.T., Moraes, R.M. (2016) Ozone stomatal flux and $O_3$ concentration-based metrics for Astronium graveolens Jacq., a Brazilian native forest tree species. Environmental Pollution 213, 1007-1015. doi:10.1016/j.envpol.2016.01.005
  18. Chappelka, A.H., Grulke, N.E. (2016) Disruption of the "disease triangle" by chemical and physical environmental change. Plant Biology 18, 5-12. doi:10.1111/plb.12353
  19. Cieslik, S., Omasa, K., Paoletti, E. (2009) Why and how terrestrial plants exchange gases with air. Plant Biology 11, 24-34. doi:10.1111/j.1438-8677.2009.00262.x
  20. CLRTAP (2015) Mapping critical levels for vegetation, Chapter III of manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. UNECE Convention on Long-range Transboundary Air Pollution.
  21. Cotrozzi, L., Remorini, D., Pellegrini, E., Guidi, L., Lorenzini, G., Massai, R., Nali, C., Landi, M. (2017) Cross-talk between physiological and metabolic adjustments adopted by Quercus cerris to mitigate the effects of severe drought and realistic future ozone concentrations. Forests 8, 148. doi:10.3390/f8050148
  22. Cotrozzi, L., Remorini, D., Pellegrini, E., Landi, M., Massai, R., Nali, C., Guidi, L., Lorenzini, G. (2016) Variations in physiological and biochemical traits of oak seedlings grown under drought and ozone stress. Physiologia Plantarum 157, 69-84. doi:10.1111/ppl.12402
  23. Danh, N.T., Huy, L.N., Oanh, N.T.K. (2016) Assessment of rice yield loss due to exposure to ozone pollution in Southern Vietnam. Science of The Total Environment 566-567, 1069-1079. doi:10.1016/j.scitotenv.2016.05. 131
  24. Danielsson, H., Karlsson, G.P., Karlsson, P.E., Håkan Pleijel, H. (2003) Ozone uptake modelling and fluxresponse relationships - an assessment of ozoneinduced yield loss in spring wheat. Atmospheric Environment 37, 475-485. doi:10.1016/S1352-2310(02)00924-X
  25. Danielsson, H., Karlsson, P.E., Pleijel, H. (2013) An ozone response relationship for four Phleum pratense genotypes based on modelling of the phytotoxic ozone dose (POD). Environmental and Experimental Botany 90, 70-77. doi:10.1016/j.envexpbot.2012.10.007
  26. De Marco, A., Sicard, P., Fares, S., Tuovinen, J.-P., Anav, A., Paoletti, E. (2016) Assessing the role of soil water limitation in determining the Phytotoxic Ozone Dose (PODY) thresholds. Atmospheric Environment 147, 88-97. doi:10.1016/j.atmosenv.2016.09.066
  27. Deb Roy, S., Beig, G., Ghude, S.D. (2009) Exposure-plant response of ambient ozone over the tropical Indian region. Atmospheric Chemistry and Physics 9, 5253-5260. doi:10.5194/acp-9-5253-2009
  28. Emberson, L.D., Ashmore, M.R., Cambridge, H.M., Simpson, D., Tuovinen, J.-P. (2000a) Modelling stomatal ozone flux across Europe. Environmental Pollution 109, 403-413. doi:10.1016/S0269-7491(00)00043-9
  29. Emberson, L.D., Simpson, D., Tuovinen, J.P., Ashmore, M., Cambridge, H. (2000b) Towards a model of ozone deposition and stomatal uptake over Europe, in: EMEP MSC-W Note 6/2000. The Norwegian Meteorological Institute, Oslo.
  30. Emberson, L.D., Buker, P., Ashmore, M.R. (2007) Assessing the risk caused by ground level ozone to European forest trees: a case study in pine, beech and oak across different climate regions. Environmental pollution 147, 454-466. doi:10.1016/j.envpol.2006.10.026
  31. Feng, Z., Hu, E., Wang, X., Jiang, L., Liu, X. (2015) Ground-level $O_3$ pollution and its impacts on food crops in China: A review. Environmental Pollution 199, 42-48. doi:10.1016/j.envpol.2015.01.016
  32. Feng, Z., Kobayashi, K., Ainsworth, E.A. (2008) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a metaanalysis. Global Change Biology 14, 2696-2708. doi:10.1111/j.1365-2486.2008.01673.x
  33. Feng, Z., Tang, H., Uddling, J., Pleijel, H., Kobayashi, K., Zhu, J., Oue, H., Guo, W. (2012) A stomatal ozone flux-response relationship to assess ozone-induced yield loss of winter wheat in subtropical China. Environmental Pollution 164, 16-23. doi:10.1016/j.envpol.2012.01.014
  34. Fowler, D., Cape, J.N. (1982) Air pollutants in agriculture and horticulture, in: Unsworth, M.H., Ormrod, D.P. (Eds.), Effects of Gaseous Air Pollution in Agriculture and Horticulture. Butterworth Scientific, London, pp. 3-26.
  35. Fuhrer, J. (2009) Ozone risk for crops and pastures in present and future climates. Naturwissenschaften 96, 173-194. doi:10.1007/s00114-008-0468-7
  36. Fuhrer, J., Skarby, L., Ashmore, M.R.R. (1997) Critical levels for ozone effects on vegetation in Europe. Environmental Pollution 97, 91-106. doi:10.1016/S0269-7491(97)00067-5
  37. Gerosa, G., Vitale, M., Finco, A., Manes, F., Denti, A.B., Cieslik, S. (2005) Ozone uptake by an evergreen Mediterranean Forest (Quercus ilex) in Italy. Part I: Micrometeorological flux measurements and flux partitioning. Atmospheric Environment 39, 3255-3266. doi:10.1016/j.atmosenv.2005.01.056
  38. Gonzalez-Fernandez, I., Sanz, J., Calvete-Sogo, H., Elvira, S., Alonso, R., Bermejo-Bermejo, V. (2017) Validation of ozone response functions for annual Mediterranean pasture species using close-to-field-conditions experiments. Environmental Science and Pollution Research. doi:10.1007/s11356-017-9099-x
  39. Grunhage, L., Jager, H.-J. (2003) From critical levels to critical loads for ozone: a discussion of a new experimental and modelling approach for establishing flux - response relationships for agricultural crops and native plant species. Environmental Pollution 125, 99-110. doi:10.1016/S0269-7491(03)00092-7
  40. Grunhage, L., Jager, H.-J., Haenel, H.-D., Lopmeier, F.-J., Hanewald, K. (1999) The European critical levels for ozone: improving their usage. Environmental Pollution 105, 163-173. doi:10.1016/S0269-7491(99)00029-9
  41. Grunhage, L., Krause, G.H., Kollner, B., Bender, J., Weigel, H.-J.J., Jager, H.-J.J., Guderian, R. (2001) A new flux-orientated concept to derive critical levels for ozone to protect vegetation. Environmental Pollution 111, 355-362. doi:10.1016/S0269-7491(00)00181-0
  42. Grunhage, L., Pleijel, H., Mills, G., Bender, J., Danielsson, H., Lehmann, Y., Castell, J.-F., Bethenod, O. (2012) Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield. Environmental Pollution 165, 147-157. doi:10.1016/j.envpol.2012.02.026
  43. Harmens, H., Mills, G., Emberson, L.D., Ashmore, M.R. (2007) Implications of climate change for the stomatal flux of ozone: A case study for winter wheat. Environmental Pollution 146, 763-770. doi:10.1016/j.envpol.2006.05.018
  44. Hicks, B.B., Baldocchi, D.D., Meyers, T.P., Hosker, R.P., Matt, D.R. (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water, Air, and Soil Pollution 36, 311-330. doi:10.1007/BF00229675
  45. Hiyama, T., Kochi, K., Kobayashi, N., Sirisampan, S. (2005) Seasonal variation in stomatal conductance and physiological factors observed in a secondary warmtemperate forest. Ecological Research 20, 333-346. doi:10.1007/s11284-005-0049-6
  46. Hoshika, Y., Paoletti, E., Omasa, K. (2012a) Parameterization of Zelkova serrata stomatal conductance model to estimate stomatal ozone uptake in Japan. Atmospheric Environment 55, 271-278. doi:10.1016/j.atmosenv.2012.02.083
  47. Hoshika, Y., Watanabe, M., Inada, N., Koike, T. (2012b) Ozone-induced stomatal sluggishness develops progressively in Siebold's beech (Fagus crenata). Environmental Pollution 166, 152-156. doi:10.1016/j.envpol.2012.03.013
  48. Hoshika, Y., Omasa, K., Paoletti, E. (2013a) Both ozone exposure and soil water stress are able to induce stomatal sluggishness. Environmental and Experimental Botany 88, 19-23. doi:10.1016/j.envexpbot.2011.12.004
  49. Hoshika, Y., Watanabe, M., Inada, N., Koike, T. (2013b) Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold's beech (Fagus crenata). Annals of Botany 112, 1149-1158. doi:10.1093/aob/mct166
  50. Hoshika, Y., Katata, G., Deushi, M., Watanabe, M., Koike, T., Paoletti, E. (2015a) Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. Scientific Reports 5, 9871. doi: 10.1038/srep09871
  51. Hoshika, Y., Watanabe, M., Inada, N., Koike, T. (2015b) Effects of ozone-induced stomatal closure on ozone uptake and its changes due to leaf age in sun and shade leaves of Siebold's beech. Journal of Agricultural Meteorology 71, 218-226. doi:10.2480/agrmet.D-14-00013
  52. Hoshika, Y., Carrari, E., Zhang, L., Carriero, G., Pignatelli, S., Fasano, G., Materassi, A., Paoletti, E. (2017a) Testing a ratio of photosynthesis to $O_3$ uptake as an index for assessing $O_3$-induced foliar visible injury in poplar trees. Environmental Science and Pollution Research. doi:10.1007/s11356-017-9475-6
  53. Hoshika, Y., Fares, S., Savi, F., Gruening, C., Goded, I., De Marco, A., Sicard, P., Paoletti, E. (2017b) Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests. Agricultural and Forest Meteorology 234-235, 212-221. doi:10.1016/j.agrformet.2017.01.005
  54. Hu, E., Gao, F., Xin, Y., Jia, H., Li, K., Hu, J., Feng, Z. (2015) Concentration- and flux-based ozone doseresponse relationships for five poplar clones grown in North China. Environmental Pollution 207, 21-30. doi:10.1016/j.envpol.2015.08.034
  55. Jarvis, P.G. (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society B: Biological Sciences 273, 593-610. doi:10.1098/rstb.1976.0035
  56. Kalabokas, P.D., Cammas, J.-P., Thouret, V., Volz-Thomas, A., Boulanger, D., Repapis, C.C. (2013) Examination of the atmospheric conditions associated with high and low summer ozone levels in the lower troposphere over the Eastern Mediterranean. Atmospheric Chemistry and Physics Discussions 13, 2457-2491. doi:10.5194/acpd-13-2457-2013
  57. Karenlampi, L., Skarby, L. (1996) Critical Levels for Ozone in Europe: Testing and Finalizing the Concepts, in: UN-ECE Workshop Report. p. 363.
  58. Karlsson, P.E., Braun, S., Broadmeadow, M., Elvira, S., Emberson, L.D., Gimeno, B.S., Le Thiec, D., Novak, K., Oksanen, E., Schaub, M., Uddling, J., Wilkinson, M. (2007a) Risk assessments for forest trees: The performance of the ozone flux versus the AOT concepts. Environmental Pollution 146, 608-616. doi:10.1016/j.envpol.2006.06.012
  59. Karlsson, P.E., Braun, S., Broadmeadow, M., Elvira, S., Emberson, L.D., Gimeno, B.S., Le Thiec, D., Novak, K., Oksanen, E., Schaub, M., Uddling, J., Wilkinson, M. (2007b) Risk assessments for forest trees: the performance of the ozone flux versus the AOT concepts. Environmental Pollution 146, 608-616. doi:10.1016/j.envpol.2006.06.012
  60. Karlsson, P.E., Medin, E.L., Ottosson, S., Sellden, G., Wallin, G., Pleijel, H., Skarby, L. (2004a) A cumulative ozone uptake-response relationship for the growth of Norway spruce saplings. Environmental Pollution 128, 405-417. doi:10.1016/j.envpol.2003.09.008
  61. Karlsson, P.E., Uddling, J., Braun, S., Broadmeadow, M., Elvira, S., Gimeno, B.S., Le Thiec, D., Oksanen, E., Vandermeiren, K., Wilkinson, M., Emberson, L.D. (2004b) New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone. Atmospheric Environment 38, 2283- 2294. doi:10.1016/j.atmosenv.2004.01.027
  62. Kim, M.J., Park, R.J., Ho, C.-H., Woo, J.-H., Choi, K.-C., Song, C.-K., Lee, J.-B. (2015) Future ozone and oxidants change under the RCP scenarios. Atmospheric Environment 101, 103-115. doi:10.1016/j.atmosenv.2014.11.016
  63. Kinose, Y., Azuchi, F., Uehara, Y., Kanomata, T., Kobayashi, A., Yamaguchi, M., Izuta, T. (2014) Modeling of stomatal conductance to estimate stomatal ozone uptake by Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla. Environmental Pollution 194, 235-245. doi:10.1016/j.envpol.2014.07.030
  64. Kinose, Y., Fukamachi, Y., Okabe, S., Hiroshima, H., Watanabe, M., Izuta, T. (2017) Photosynthetic responses to ozone of upper and lower canopy leaves of Fagus crenata Blume seedlings grown under different soil nutrient conditions. Environmental Pollution 223, 213-222. doi:10.1016/j.envpol.2017.01.014
  65. Kitao, M., Komatsu, M., Hoshika, Y., Yazaki, K., Yoshimura, K., Fujii, S., Miyama, T., Kominami, Y. (2014) Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman-Monteith approach combined with a photosynthesis-dependent stomatal model. Environmental Pollution 184, 457-463. doi:10.1016/j.envpol.2013.09.023
  66. Kitao, M., Low, M., Heerdt, C., Grams, T.E.E., Haberle, K.-H., Matyssek, R. (2009) Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the withincanopy light gradient. Environmental Pollution 157, 537-544. doi:10.1016/j.envpol.2008.09.016
  67. Kitao, M., Yasuda, Y., Kominami, Y., Yamanoi, K., Komatsu, M., Miyama, T., Mizoguchi, Y., Kitaoka, S., Yazaki, K., Tobita, H., Yoshimura, K., Koike, T., Izuta, T. (2016) Increased phytotoxic $O_3$ dose accelerates autumn senescence in an $O_3$-sensitive beech forest even under the present-level $O_3$. Scientific Reports 6, 32549. doi:10.1038/srep32549
  68. Kobayashi, K. (2015) FACE-ing the challenges of increasing surface ozone concentration in Asia. Journal of Agricultural Meteorology 71, 161-166. doi:10.2480/ agrmet.D-15-00100
  69. Koike, T., Watanabe, M., Hoshika, Y., Kitao, M., Matsumura, H., Funada, R., Izuta, T. (2013) Effects of ozone on forest ecosystems in East and Southeast Asia. In Climate Change, Air Pollution and Global Challenges: Understanding and Solutions from Forest Research, A COST action (Matyssek, R., Clarke, N., Cudlin, P., Mikkelsen, T.N., Tuovinen, J.-P., Wieser, G., and Paoletti, E. Eds), Elsevier, Oxford, pp. 371-390. doi: 10.1016/B978-0-08-098349-3.00017-7
  70. Kolb, T., Matyssek, R. (2001) Limitations and perspectives about scaling ozone impacts in trees. Environmental Pollution 115, 373-393. doi:10.1016/S0269-7491(01)00228-7
  71. Komatsu, M., Yoshimura, K., Fujii, S., Yazaki, K., Tobita, H., Mizoguchi, Y., Miyama, T., Kominami, Y., Yasuda, Y., Yamanoi, K., Kitao, M. (2015) Estimation of ozone concentrations above forests using atmospheric observations at urban air pollution monitoring stations. Journal of Agricultural Meteorology 71, 202-210. doi: 10.2480/agrmet.D-14-00024
  72. Lefohn, A.S., Laurence, J.A., Kohut, R.J. (1988) A comparison of indices that describe the relationship between exposure to ozone and reduction in the yield of agricultural crops. Atmospheric Environment (1967) 22, 1229-1240. doi:10.1016/0004-6981(88)90353-8
  73. Lefohn, A.S., Runeckles, V.C. (1987) Establishing standards to protect vegetation-ozone exposure/dose considerations. Atmospheric Environment 21, 561-568. doi:10.1016/0004-6981(87)90038-2
  74. Leuning, R. (1995) A critical appraisal of a combined stomatal- photosynthesis model for C3 plants. Plant, Cell and Environment 18, 339-355. doi:10.1111/j.1365-3040.1995.tb00370.x
  75. Li, P., Calatayud, V., Gao, F., Uddling, J., Feng, Z. (2016) Differences in ozone sensitivity among woody species are related to leaf morphology and antioxidant levels. Tree Physiology 36, 1105-1116. doi:10.1093/treephys/tpw042
  76. Lindroth, R.L. (2010) Impacts of elevated atmospheric $CO_2$ and $O_3$ on forests: phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology 36, 2-21. doi:10.1007/s10886-009-9731-4
  77. Loibl, W., Bolhar-Nordenkampf, H.R., Herman, F., Smidt, S. (2004) Modelling critical levels of ozone for the forested area of austria modifications of the AOT40 concept. Environmental Science and Pollution Research 11, 171-180. doi:10.1007/BF02979672
  78. Lu, Y., Jenkins, A., Ferrier, R.C., Bailey, M., Gordon, I.J., Song, S., Huang, J., Jia, S., Zhang, F., Liu, X., Feng, Z., Zhang, Z. (2015) Addressing China's grand challenge of achieving food security while ensuring environmental sustainability. Science Advances 1.
  79. Marzuoli, R., Finco, A., Chiesa, M., Gerosa, G. (2017) A dose-response relationship for marketable yield reduction of two lettuce (Lactuca sativa L.) cultivars exposed to tropospheric ozone in Southern Europe. Environmental Science and Pollution Research 1-10. doi:10.1007/s11356-016-8224-6
  80. Matyssek, R., Bytnerowicz, A., Karlsson, P.E., Paoletti, E., Sanz, M., Schaub, M., Wieser, G. (2007) Promoting the $O_3$ flux concept for European forest trees. Environmental Pollution 146, 587-607. doi:10.1016/j.envpol.2006.11.011
  81. Matyssek, R., Innes, J.L. (1999) Ozone - a risk factor for trees and forests in Europe?, in: Forest Growth Responses to the Pollution Climate of the 21st Century. Springer Netherlands, Dordrecht, pp. 199-226. doi:10.1007/978-94-017-1578-2_14
  82. Matyssek, R., Wieser, G., Nunn, A.J., Kozovits, A.R., Reiter, I.M., Heerdt, C., Winkler, J.B., Baumgarten, M., Haberle, K.-H., Grams, T.E.E., Werner, H., Fabian, P., Havranek, W.M. (2004) Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions. Atmospheric Environment 38, 2271-2281. doi:10.1016/j.atmosenv.2003.09.078
  83. McAinsh, M.R., Evans, N.H., Montgomery, L.T., North, K.A. (2002) Calcium signalling in stomatal responses to pollutants. New Phytologist 153, 441-447. doi:10.1046/j.0028-646X.2001.00336.x
  84. McGrath, J.M., Betzelberger, A.M., Wang, S., Shook, E., Zhu, X.-G., Long, S.P., Ainsworth, E.A. (2015) An analysis of ozone damage to historical maize and soybean yields in the United States. Proceedings of the National Academy of Sciences of the United States of America 112, 14390-14395. doi:10.1073/pnas.1509777112
  85. Mills, G., Buse, A., Gimeno, B., Bermejo, V., Holland, M., Emberson, L.D., Pleijel, H. (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmospheric Environment 41, 2630-2643. doi:10.1016/j.atmosenv.2006.11.016
  86. Mills, G., Hayes, F., Wilkinson, S., Davies, W.J. (2009) Chronic exposure to increasing background ozone impairs stomatal functioning in grassland species. Global Change Biology 15, 1522-1533. doi:10.1111/j.1365-2486.2008.01798.x
  87. Mills, G., Pleijel, H., Braun, S., Buker, P., Bermejo, V., Calvo, E., Danielsson, H., Emberson, L.D., Fernandez, I.G., Grunhage, L., Harmens, H., Hayes, F., Karlsson, P.E., Simpson, D. (2011) New stomatal flux-based critical levels for ozone effects on vegetation, Atmospheric Environment 45, 5064-5068. doi:10.1016/j.atmosenv.2011.06.009
  88. Morgan, P.B., Ainsworth, E.A., Long, S.P. (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant, Cell and Environment 26, 1317-1328. doi:10.1046/j.0016-8025.2003.01056.x
  89. Musselman, R.C., Lefohn, A.S., Massman, W.J., Heath, R.L. (2006) A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmospheric Environment 40, 1869-1888. doi:10.1016/j.atmosenv.2005.10.064
  90. National Ambient Air Quality Standards for Ozone; Final Rule [WWW Document], 2015. Federal Register. URL https://www.gpo.gov/fdsys/pkg/FR-2015-10-26/pdf/2015-26594.pdf (accessed 4.9.17).
  91. Osborne, S.A., Mills, G., Hayes, F., Ainsworth, E.A., Buker, P., Emberson, L. (2016) Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose-response data. Global Change Biology 22, 3097-3111. doi:10.1111/gcb.13318
  92. Oue, H., Feng, Z., Pang, J., Miyata, A., Mano, M., Kobayashi, K., Zhu, J. (2009) Modeling the stomatal conductance and photosynthesis of a flag leaf of wheat under elevated $O_3$ concentration. Journal of Agricultural Meteorology 65, 239-248. doi:10.2480/agrmet.65.3.7
  93. Oue, H., Kobayashi, K., Zhu, J., Guo, W., Zhu, X. (2011) Improvements of the ozone dose response functions for predicting the yield loss of wheat due to elevated ozone. Journal of Agricultural Meteorology 67, 21-32. doi:10.2480/agrmet.67.1.2
  94. Oue, H., Motohiro, S., Inada, K., Miyata, A., Mano, M., Kobayashi, K., Zhu, J. (2008) Evaluation of ozone uptake by the rice canopy with the multi-layer model. Journal of Agricultural Meteorology 64, 223-232. doi: 10.2480/agrmet.64.4.8
  95. Paoletti, E., Manning, W. (2007) Toward a biologically significant and usable standard for ozone that will also protect plants. Environmental Pollution 150, 85-95. doi:10.1016/j.envpol.2007.06.037
  96. Paoletti, E., Materassi, A., Fasano, G., Hoshika, Y., Carriero, G., Silaghi, D., Badea, O. (2017) A new-generation 3D ozone FACE (Free Air Controlled Exposure). Science of The Total Environment 575, 1407-1414. doi:10.1016/j.scitotenv.2016.09.217
  97. Pleijel, H., Danielsson, H., Emberson, L.D., Ashmore, M.R., Mills, G. (2007) Ozone risk assessment for agricultural crops in Europe: Further development of stomatal flux and flux-response relationships for European wheat and potato. Atmospheric Environment 41, 3022-3040. doi:10.1016/j.atmosenv.2006.12.002
  98. Pleijel, H., Danielsson, H., Ojanpera, K., Temmerman, L.D., Hogy, P., Badiani, M., Karlsson, P.E. (2004) Relationships between ozone exposure and yield loss in European wheat and potato - a comparison of concentration- and flux-based exposure indices. Atmospheric Environment 38, 2259-2269. doi:10.1016/j.atmosenv.2003.09.076
  99. Qiu, J. (2010) China drought highlights future climate threats. Nature 465, 142-143. doi:10.1038/465142a
  100. Saitanis, C.J., Panagopoulos, G., Dasopoulou, V., Agathokleous, E., Papatheohari, Y. (2015) Integrated assessment of ambient ozone phytotoxicity in Greece's Tripolis Plateau. Journal of Agricultural Meteorology 71, 55-64. doi:10.2480/agrmet.D-14-00030
  101. Sanz, J., Gonzalez-Fernandez, I., Elvira, S., Muntifering, R., Alonso, R., Bermejo-Bermejo, V. (2016) Setting ozone critical levels for annual Mediterranean pasture species: Combined analysis of open-top chamber experiments. Science of The Total Environment 571, 670-679. doi:10.1016/j.scitotenv.2016.07.035
  102. Sarkar, A., Agrawal, S.B. (2010) Elevated ozone and two modern wheat cultivars: An assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameters. Environmental and Experimental Botany 69, 328-337. doi:10.1016/j.envexpbot.2010.04.016
  103. Shang, B., Feng, Z., Li, P., Yuan, X., Xu, Y., Calatayud, V. (2017) Ozone exposure- and flux-based response relationships with photosynthesis, leaf morphology and biomass in two poplar clones. Science of The Total Environment 603-604, 185-195. doi:10.1016/j.scitotenv.2017.06.083
  104. Sicard, P., Serra, R., Rossello, P. (2016) Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999-2012. Environmental Research 149, 122-144. doi:10.1016/j.envres.2016.05.014
  105. Simpson, D., Benedictow, A., Berge, H., Bergstrom, R., Emberson, L.D., Fagerli, H., Flechard, C.R., Hayman, G.D., Gauss, M., Jonson, J.E., Jenkin, M.E., Nyiri, A., Richter, C., Semeena, V.S., Tsyro, S., Tuovinen, J.-P., Valdebenito, A., Wind, P. (2012) The EMEP MSC-W chemical transport model - technical description. Atmospheric Chemistry and Physics 12, 7825-7865. doi:10.5194/acp-12-7825-2012
  106. Spranger, T., Lorenz, U., Gregor, H.-D. (2004) Manual on methodologies and criteria for Modelling and Mapping Critical Loads & Levels and Air Pollution Effects, Risks and Trends. Federal Environmental Agency (Umweltbundesamt), Berlin.
  107. Sugai, T., Kam, D.-G., Agathokleous, E., Watanabe, M., Kita, K., Koike, T. (2018) Growth and photosynthetic response of two larches exposed to $O_3$ mixing ratios ranging from preindustrial to near future. Photosynthetica 56, In Press.
  108. Takigawa, M., Niwano, M., Akimoto, H., Takahashi, M., Kobayashi, K. (2009) Projection of surface ozone over East Asia in 2020. Journal of Agricultural Meteorology 65, 161-166. doi:10.2480/agrmet.65.2.5
  109. Tang, H., Pang, J., Zhang, G., Takigawa, M., Liu, G., Zhu, J., Kobayashi, K. (2014) Mapping ozone risks for rice in China for years 2000 and 2020 with flux-based and exposure-based doses. Atmospheric Environment 86, 74-83. doi:10.1016/j.atmosenv.2013.11.078
  110. Tang, H., Takigawa, M., Liu, G., Zhu, J., Kobayashi, K. (2013) A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches. Global Change Biology 19, 2739-2752. doi:10.1111/gcb.12252
  111. Tausz, M., Grulke, N.E., Wieser, G. (2007) Defense and avoidance of ozone under global change. Environmental Pollution 147, 525-531. doi:10.1016/j.envpol.2006.08.042
  112. Tian, H., Ren, W., Tao, B., Sun, G., Chappelka, A., Wang, X., Pan, S., Yang, J., Liu, J., Felzer, B.S., Melillo, J. M., Reilly, J. (2016) Climate extremes and ozone pollution: a growing threat to China's food security. Ecosystem Health and Sustainability 2, e01203. doi:10.1002/ehs2.1203
  113. Vaultier, M.-N., Jolivet, Y. (2015) Ozone sensing and early signaling in plants: An outline from the cloud. Environmental and Experimental Botany 114, 144-152. doi:10.1016/j.envexpbot.2014.11.012
  114. Verstraeten, W.W., Neu, J.L., Williams, J.E., Bowman, K.W., Worden, J.R., Boersma, K.F. (2015) Rapid increases in tropospheric ozone production and export from China. Nature Geoscience 8, 690-695. doi:10.1038/ngeo2493
  115. Vingarzan, R. (2004) A review of surface ozone background levels and trends. Atmospheric Environment 38, 3431-3442. doi:10.1016/j.atmosenv.2004.03.030
  116. Wang, X., Mauzerall, D.L. (2004) Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmospheric Environment 38, 4383-4402. doi: 10.1016/j.atmosenv.2004.03.067
  117. Watanabe, M., Matsuo, N., Yamaguchi, M., Matsumura, H., Kohno, Y., Izuta, T. (2010) Risk assessment of ozone impact on the carbon absorption of Japanese representative conifers. European Journal of Forest Research 129, 421-430. doi:10.1007/s10342-009-0316-0
  118. Watanabe, M., Yamaguchi, M. (2011) Risk assessment of ozone impact on 6 Japanese forest tree species with consideration of nitrogen deposition. Japanese Journal of Ecology 61, 89-96 (in Japanese).
  119. Watanabe, M., Yamaguchi, M., Matsumura, H., Kohno, Y., Izuta, T. (2012) Risk assessment of ozone impact on Fagus crenata in Japan: consideration of atmospheric nitrogen deposition. European Journal of Forest Research 131, 475-484. doi:10.1007/s10342-011-0521-5
  120. Watanabe, M., Yamaguchi, M., Matsumura, H., Kohno, Y., Koike, T., Izuta, T. (2011) A case study of risk assessment of ozone impact on forest tree species in Japan. Asian Journal of Atmospheric Environment 5, 205-215. doi:10.5572/ajae.2011.5.4.205
  121. Watanabe, T., Izumi, T., Matsuyama, H. (2016) Accumulated phytotoxic ozone dose estimation for deciduous forest in Kanto, Japan in summer. Atmospheric Environment 129, 176-185. doi:10.1016/j.atmosenv.2016.01.016
  122. Wieser, G., Tegischer, K., Tausz, M., Haberle, K.-H., Grams, T.E.E., Matyssek, R. (2002) Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense. Tree Physiology 22, 583-590. https://doi.org/10.1093/treephys/22.8.583
  123. Wilkinson, S., Mills, G., Illidge, R., Davies, W.J. (2012) How is ozone pollution reducing our food supply? Journal of Experimental Botany 63, 527-536. doi:10.1093/jxb/err317
  124. Wittig, V.E., Ainsworth, E.A., Long, S.P. (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant, Cell & Environment 30, 1150-1162. doi:10.1111/j.1365-3040.2007.01717.x
  125. World Health Organization (WHO) (2000) Air Quality Guidelines for Europe, 2nd ed. Reg. Publ. Eur. Ser., WHO Reg. Off. Eur., Copenhagen.
  126. Yamaguchi, M., Hoshino, D., Inada, H., Akhtar, N., Sumioka, C., Takeda, K., Izuta, T. (2014) Evaluation of the effects of ozone on yield of Japanese rice (Oryza sativa L.) based on stomatal ozone uptake. Environmental Pollution 184, 472-480. doi:10.1016/j.envpol.2013.09.024
  127. Yamaguchi, M., Watanabe, M., Matsumura, H., Kohno, Y., Izuta, T. (2011) Experimental studies on the effects of ozone on growth and photosynthetic activity of Japanese forest tree species. Asian Journal of Atmospheric Environment 5, 65-78. doi:10.5572/ajae.2011.5.2.065
  128. Yu, G.-R., Zhuang, J. i. e., Yu, Z.-L. (2001) An attempt to establish a synthetic model of photosynthesis-transpiration based on stomatal behavior for maize and soybean plants grown in field. Journal of Plant Physiology 158, 861-874. doi:10.1078/0176-1617-00177
  129. Yuan, X., Feng, Z., Liu, S., Shang, B., Li, P., Xu, Y., Paoletti, E. (2017) Concentration- and flux-based dose responses of isoprene emission from poplar leaves and plants exposed to an ozone concentration gradient. Plant, Cell & Environment. doi:10.1111/pce.13007
  130. Zhang, W., Feng, Z., Wang, X., Liu, X., Hu, E. (2017) Quantification of ozone exposure- and stomatal uptakeyield response relationships for soybean in Northeast China. Science of The Total Environment 599-600, 710-720. doi:10.1016/j.scitotenv.2017.04.231

Cited by

  1. Mesophyll conductance to CO2 in leaves of Siebold’s beech (Fagus crenata) seedlings under elevated ozone pp.1618-0860, 2018, https://doi.org/10.1007/s10265-018-1063-4
  2. Effects of ozone on soil respiration rate of Siebold’s beech seedlings grown under different soil nutrient conditions pp.1881-0136, 2019, https://doi.org/10.2480/agrmet.D-18-00009
  3. Source attribution of European surface O3 using a tagged O3 mechanism vol.19, pp.23, 2019, https://doi.org/10.5194/acp-19-14535-2019
  4. Elucidating emissions control strategies for ozone to protect human health and public welfare within the continental United States vol.14, pp.12, 2018, https://doi.org/10.1088/1748-9326/ab5e05
  5. Developing Ozone Risk Assessment for Larch Species vol.3, pp.None, 2020, https://doi.org/10.3389/ffgc.2020.00045
  6. Ozone-induced change in the relationship between stomatal conductance and net photosynthetic rate is a factor determining cumulative stomatal ozone uptake by Fagus crenata seedlings vol.34, pp.2, 2018, https://doi.org/10.1007/s00468-019-01927-1
  7. Nitrogen Use Efficiency for Growth of Fagus crenata Seedlings Under Elevated Ozone and Different Soil Nutrient Conditions vol.11, pp.4, 2018, https://doi.org/10.3390/f11040371
  8. Current Status and Future Directions of Tropospheric Photochemical Ozone Studies in Korea vol.36, pp.4, 2018, https://doi.org/10.5572/kosae.2020.36.4.419
  9. Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity vol.6, pp.33, 2018, https://doi.org/10.1126/sciadv.abc1176
  10. High spatial resolution ozone risk-assessment for Asian forests vol.15, pp.10, 2018, https://doi.org/10.1088/1748-9326/abb501
  11. Screening of forty Indian Amaranthus hypochondriacus cultivars for tolerance and susceptibility to tropospheric ozone stress vol.63, pp.3, 2020, https://doi.org/10.1007/s13237-020-00335-y
  12. Emerging challenges of ozone impacts on asian plants: actions are needed to protect ecosystem health vol.7, pp.1, 2018, https://doi.org/10.1080/20964129.2021.1911602
  13. Growth and Photosynthetic Responses of Seedlings of Japanese White Birch, a Fast-Growing Pioneer Species, to Free-Air Elevated O3 and CO2 vol.12, pp.6, 2021, https://doi.org/10.3390/f12060675
  14. Assessment of ozone risk to Central European forests: Time series indicates perennial exceedance of ozone critical levels vol.203, pp.None, 2022, https://doi.org/10.1016/j.envres.2021.111798