DOI QR코드

DOI QR Code

Development of Bolt Tap Shape Inspection System Using Computer Vision Technology

컴퓨터 비전 기술을 이용한 볼트 탭 형상 검사 시스템 개발

  • 박양재 (가천대학교 IT대학 컴퓨터공학과)
  • Received : 2018.01.26
  • Accepted : 2018.03.20
  • Published : 2018.03.28

Abstract

Computer vision technology is a component inspection to obtain a video image from the camera to the machine to perform the capabilities of the human eye with a field of artificial intelligence, and then analyzed by the algorithm to determine to determine the good and bad of production parts It is widely applied. Shape inspection method was used as how to identify the location of the start point and the end point of the search range, measure the height to the line scan method, in such a manner as to determine the presence or absence of the bolt tabs average brightness of the inspection area in a circular scan type value And the degree of similarity was calculated. The total time it takes to test in the test performance tests of two types of bolts tab enables test 300 min, and demonstrated the accuracy and efficiency of the inspection on the production line represented a complete inspection accuracy.

컴퓨터 비전 기술은 인공지능의 한 분야로 인간의 눈의 기능을 기계가 수행 할 수 있도록 카메라로부터 영상 이미지를 취득하고, 알고리즘을 통하여 분석하고 판별한 후 생산부품의 양품과 불량을 판별하는 부품 검사에 많이 적용되고 있다. 볼트 생산 시스템에서 생산되는 볼트 탭의 유무를 컴퓨터 비전 기술을 적용하여 자동으로 불량품을 선별하는 장치를 개발하였다. 형상검사 방법으로는 라인 스캔방식으로 검사영역의 시작점과 끝점의 위치를 파악하여 높이를 측정하는 방법을 사용하였으며, 볼트 탭의 유무를 판별하기 위한 방식으로는 원형 스캔방식으로 검사영역의 평균 밝기 값의 차이를 측정하여 유사도를 구하는 방식을 사용하였다. 두 종류의 볼트 탭의 검사 성능실험에서 총 검사에 소요되는 시간은 분당 300개 검사가 가능하며, 완벽한 검사 정확도를 나타내어 생산라인에서 검사의 정확성과 효율성을 입증하였다.

Keywords

References

  1. S. B. Baek, K. Y. Lee, W. J. Joo, K. Park & S. W. Ra. (2011). Improvement of the optical characteristics of vision system for precision screws using ray tracing simulation. Trans. KSPE, 28, 1194-1102.
  2. H. J. Yang, D. H. Kim. & Y. G. Seo. (2017). Noise-robust Hand Region Segmentation In RGB Color-baseed Real-time Image. Journal of Digital Contents Society, 18(8), 1603-1613. https://doi.org/10.9728/DCS.2017.18.8.1603
  3. T. R Singh, S. Roy, O. Imocha, T. Sinam & M. Singh. (2011). A new local adaptive thresholding technique in binarization, IJCSI International Journal of computer science issues, 8(6), 271-277.
  4. S. K. Hwang. (2015). Visual C++ Image Processing Pgrogramming. Seoul. Gilbut Publishing.
  5. Wikipedia, Canny Edge Detector, (2018), https://en.wikipedia.org/wiki/Canny_edge_detector,
  6. H. S. Kim.(2017), Gpu based real time lane detection using compact hough transform. Ph.D. dissertation, Kyungbok University.
  7. OpenCV. (2017), Opencv documentation, https://docs.opencv.org/2.4.13.3/
  8. S. J. Kim & S.C. Lee. (2014). Development of Inspection System for Surface of a Shack Absorber Rod using Machine Vision. Journal of the Korea Academia-Industrial Cooperation Society, 15(6), 3416-3422. https://doi.org/10.5762/KAIS.2014.15.6.3416
  9. K. H. Kwak, D. F. Huber, H. Badino & T. Kanade.(2011). Extrinsic calibration of a single line scanning lidar and a camera. intelligent robots and systems (IROS), IEEE/RSJ International conference on. 3283-3285. San Francisco, CA, USA.
  10. Gao, H. & Ye, X. & Li, J.(2013). A simple line sensing method by laser line scanning for line scale measurement, Proceedings -SPIE the international socity for optical engineering, 875. Beijing, China.
  11. Y. C. Kim, Y. M, Kim, S. G. Kim, H. B. Kim & M.T. Cho. (2016). Development of the Mechenical System and Vision Algorithm for the External Appearance Test Using Vision Image Processing. Journal of the Korea Academia-Industrial Cooperation Society, 17(2), 202-208. https://doi.org/10.5762/KAIS.2016.17.2.202
  12. J. S. Yun. & .H. Kim. (2017), An Improvement of Histogram Equalization Using Edge Information of an Image. Journal of Korea Multimedia Society, 20(2), 188-195. https://doi.org/10.9717/kmms.2017.20.2.188
  13. K. H. Kwak, D. F. Huber, H. Badino & T. Kanade. (2011). Extrinsic calibration of a single line scanning lidar and a camera. intelligent robots and systems (IROS), IEEE/RSJ International conference on. 3283-3285. San Francisco, CA, USA.
  14. S. J. Kim & S. C. Lee. (2014). Development of Inspection System for Surface of a Shock Absorber Rod using Machine vision. Journal of the Korea Academia-industrial cooperation Society, 15(6), 3416-3422. https://doi.org/10.5762/KAIS.2014.15.6.3416