DOI QR코드

DOI QR Code

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment)

물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가

  • Kim, Min-Gyeom (Department of Material Science & Engineering, Korea National University of Trasportation) ;
  • Son, Jong-Tae (Department of Nano Polymer Science & Engineering, Korea National University of Trasportation) ;
  • Hong, Tae-Whan (Department of Material Science & Engineering, Korea National University of Trasportation)
  • 김민겸 (한국교통대학교 화공신소재고분자공학부 신소재공학전공) ;
  • 손종태 (한국교통대학교 화공신소재고분자공학부 나노고분자공학전공) ;
  • 홍태환 (한국교통대학교 화공신소재고분자공학부 신소재공학전공)
  • Received : 2017.10.16
  • Accepted : 2017.11.08
  • Published : 2018.03.30

Abstract

In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.

본 연구에서는 TiN-Zr 수소분리막의 제조 공정에 대한 환경 영향 특성을 분석하기 위해 물질전과정평가를 수행하였다. Material Life Cycle Assessment (MLCA)의 소프트웨어로는 Gabi를 사용하였다. 이를 통하여 각 공정에서 미치는 영향과 특성화 별 환경영향평가를 수행하였다. 졸겔법에 의해 전구체 TiN을 합성하고 볼밀법을 이용하여 지르코늄을 코팅하였다. 이를 CIP, HPS에 의해 디스크 형으로 제작하였고 주사전자현미경(scanning electron microscopy, SEM), 에너지분산형 분광분석법(energy dispersive X-ray spectroscopy, EDS), X-선 회절분석기(X-ray diffraction, XRD), 열중량분석(thermo gravimetry/differential thermal analysis, TG/DTA), 비표면적분석(Brunauer, Emmett, Teller, BET) 및 가스 크로마토그래프 시스템(gas chromatograph system, GP)을 이용하여 분리막의 야금학적, 물리학적, 열역학적 특성을 분석하였다. 또한, 물질전과정평가를 위해 수행한 특성화와 정규화 결과, 영향범주 별 환경영향은 해양 생태 독성이 94%, 수계 생태 독성 2%, 인간독성 2%의 기여도를 보였다. 아울러, 제조공정 중 전기 사용이 생태계 영향에 큰 영향을 미친다는 것을 알 수 있었다. 물질 전 과정 평가는 Eco-Indicator '99 (EI99)와 CML 2001 방법론을 기반으로 분석하였다.

Keywords

References

  1. Dyer, P. N., Richards, R. E., Russek, S. L., and Taylor, D. M., "Ion Transport Membrane Technology for Oxygen Separation and Syngas Production," Solid State Ionics, 134.1, 21-33 (2000). https://doi.org/10.1016/S0167-2738(00)00710-4
  2. International Energy Agency (IEA), "Energy Technology Perspective 2015," Paris (2015).
  3. Balat, M., "Potential Importance of Hydrogen as a Future Solution to Environmental And Transportation Problems," Int. J. Hydrogen Energy, 33(15), 4013-4029 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.047
  4. Demirbas, A., and Dincer, K., "Sustainable Greed Diesel: A Futuristic View," Energy Sources, Part A, 30(13), 1233-1241 (2008). https://doi.org/10.1080/15567030601082829
  5. Ryi, S.-K., Han, J.-Y., Kim, C.-H., Lim, H. K., and Jung., H.-Y., "Technical Trends of Hydrogen Production," J. Clean Technol., 23(2), 121-132 (2017).
  6. Shigeyuki, U., Matsuda, T., and Kikuchi. E., "Hydrogen Permeable Palladium-Silver Alloy Membrane Supported on Porous Ceramics," J. Memb. Sci., 56(3), 315-325 (1991). https://doi.org/10.1016/S0376-7388(00)83041-0
  7. Lee S. H., and Jo., Y. M., "Review of National Policies on the Utilization of Waste Metal Resources," KIC News, 13(1), 2-9 (2010).
  8. Lee, S.-S., Lee, N.-R., Kim, K.-I., and Hong, T.-W., "Environmental Impacts Assessment of ITO (Indium Tin Oxide) using Material Life Cycle Assessment," Clean Technol., 18(1), 69-75 (2012). https://doi.org/10.7464/ksct.2012.18.1.069
  9. Jeong, S.-J., Lee, J.-Y., Sohn, J.-S., and Hur, T., "Life Cycle Assessments of Long-term and Short-term Environmental Impacts for the Incineration of Spent Li-ion Batteries (LIBs)," Korean Ind. and Eng. Chem., 17(2), 163 (2006).
  10. Lu, Y., Gou, M., Bai, R., Zhang, Y., and Chen, Z., "First-principles Study of Hydrogen Behavior in Vanadium-Based Binary Alloy Membranes for hydrogen separation," Int. J. Hydro. Energy, 42(36), 22925-22932 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.056
  11. Kim, K.-I., Kim, Y.-S., and Hong, T.-W., "Hydrogenation Properties on MgHx-$Sc_2O_3$ Composites by Mechanical Alloying," Trans. Korean Hydro. and New Energy Soc., 21(2), 81-88 (2010).