DOI QR코드

DOI QR Code

Development of Candida albicans Biofilms Is Diminished by Paeonia lactiflora via Obstruction of Cell Adhesion and Cell Lysis

  • Lee, Heung-Shick (Department of Biotechnology and Bioinformatics, Korea University) ;
  • Kim, Younhee (Department of Korean Medicine, Semyung University)
  • Received : 2017.12.20
  • Accepted : 2018.01.03
  • Published : 2018.03.28

Abstract

Candida albicans infections are often problematic to treat owing to antifungal resistance, as such infections are mostly associated with biofilms. The ability of C. albicans to switch from a budding yeast to filamentous hyphae and to adhere to host cells or various surfaces supports biofilm formation. Previously, the ethanol extract from Paeonia lactiflora was reported to inhibit cell wall synthesis and cause depolarization and permeabilization of the cell membrane in C. albicans. In this study, the P. lactiflora extract was found to significantly reduce the initial stage of C. albicans biofilms from 12 clinical isolates by 38.4%. Thus, to assess the action mechanism, the effect of the P. lactiflora extract on the adhesion of C. albicans cells to polystyrene and germ tube formation was investigated using a microscopic analysis. The density of the adherent cells was diminished following incubation with the P. lactiflora extract in an acidic medium. Additionally, the P. lactiflora-treated C. albicans cells were mostly composed of less virulent pseudohyphae, and ruptured debris was found in the serum-containing medium. A quantitative real-time PCR analysis indicated that P. lactiflora downregulated the expression of C. albicans hypha-specific genes: ALS3 by 65% (p = 0.004), ECE1 by 34.9% (p = 0.001), HWP1 by 29.2% (p = 0.002), and SAP1 by 37.5% (p = 0.001), matching the microscopic analysis of the P. lactiflora action on biofilm formation. Therefore, the current findings demonstrate that the P. lactiflora ethanol extract is effective in inhibiting C. albicans biofilms in vitro, suggesting its therapeutic potential for the treatment of biofilm-associated infections.

Keywords

References

  1. Pfaller MA, Pappas PG, Wingard JR. 2006. Invasive fungal pathogens: current epidemiological trends. Clin. Infect. Dis. 43: S3-S14. https://doi.org/10.1086/504490
  2. Martinez LR, Fries BC. 2010. Fungal biofilms: relevance in the setting of human disease. Curr. Fungal Infect. Rep. 4: 266-275. https://doi.org/10.1007/s12281-010-0035-5
  3. Ramage G, Martinez JP, Lopez-Ribot JL. 2006. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res. 6: 979-986. https://doi.org/10.1111/j.1567-1364.2006.00117.x
  4. Ramage G, Rajendran R, Sherry L, Williams C. 2012. Fungal biofilm resistance. Int. J. Microbiol. 2012: 1-14.
  5. Mathe L, Van Dijck P. 2013. Recent insights into Candida albicans biofilm resistance mechanisms. Curr. Genet. 59: 251-264.
  6. Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Kohler JR, et al. 2010. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 6: e1000828. https://doi.org/10.1371/journal.ppat.1000828
  7. Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. 2003. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 71: 4333-4340. https://doi.org/10.1128/IAI.71.8.4333-4340.2003
  8. Campbell BC, Chan KL, Kim JH. 2012. Chemosensitization as a means to augment commercial antifungal agents. Front. Microbiol. 3: 79.
  9. Cowen LE. 2008. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat. Rev. Microbiol. 6: 187-198. https://doi.org/10.1038/nrmicro1835
  10. Bink A, P ellens K , Cammue B PA, Thevissen K. 2 011. Anti-biofilm strategies: how to eradicate Candida biofilms? Open Mycol. J. 5: 29-38. https://doi.org/10.2174/1874437001105010029
  11. Lee HS, Kim Y. 2017. Paeonia lactiflora inhibits cell wall synthesis and triggers membrane depolarization in Candida albicans. J. Microbiol. Biotechnol. 27: 395-404. https://doi.org/10.4014/jmb.1611.11064
  12. Park SJ, Choi SJ, Shin WS, Lee HM, Lee KS, Lee KH. 2009. Relationship between biofilm formation ability and virulence of Candida albicans. J. Bacteriol. Virol. 39: 119-124. https://doi.org/10.4167/jbv.2009.39.2.119
  13. Liu M, Seidel V, Katerere DR, Gray AI. 2007. Colorimetric broth microdilution method for the antifungal screening of plant extracts against yeast. Methods 42: 325-329. https://doi.org/10.1016/j.ymeth.2007.02.013
  14. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183: 5385-5394. https://doi.org/10.1128/JB.183.18.5385-5394.2001
  15. Thein ZM, Samaranayake YH, Samaranayake LP. 2007. In vitro biofilm formation of Candida albicans and non-albicans Candida species under dynamic and anaerobic conditions. Arch. Oral Biol. 52: 761-767. https://doi.org/10.1016/j.archoralbio.2007.01.009
  16. Skrzypek MS, Binkley J, Binkley G, Miyasato SR, Simison M, Sherlock G. 2017. The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res. 45: D592-D596. https://doi.org/10.1093/nar/gkw924
  17. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. 2012. Primer3 - new capabilities and interfaces. Nucleic Acids Res. 40: e115 https://doi.org/10.1093/nar/gks596
  18. Kucharikova S, Tournu H, Lagrou K, Van Dijck P, Bujdakova H. 2011. Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. J. Med. Microbiol. 60: 1261-1269. https://doi.org/10.1099/jmm.0.032037-0
  19. Sudbery P, Gow N, Berman J. 2004. The distinct morphogenic states of Candida albicans. Trends Microbiol. 12: 317-324. https://doi.org/10.1016/j.tim.2004.05.008
  20. Merson-Davies LA, Odds FC. 1989. A morphology index for characterization of cell shape in Candida albicans. J. Gen. Microbiol. 135: 3143-3152.
  21. Hoyer LL. 2001. The ALS gene family of Candida albicans. Trends Microbiol. 9: 176-180. https://doi.org/10.1016/S0966-842X(01)01984-9
  22. Li F, Svarovsky MJ, Karlsson AJ, Wagner JP, Marchillo K, Oshel P, et al. 2007. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot. Cell 6: 931-939. https://doi.org/10.1128/EC.00049-07
  23. Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, et al. 2016. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nat. 532: 64-68. https://doi.org/10.1038/nature17625
  24. Sundstrom P. 2002. Adhesion in Candida spp. Cell. Microbiol. 4: 461-469. https://doi.org/10.1046/j.1462-5822.2002.00206.x
  25. Schaller M, Borelli C, Korting HC, Hube B. 2005. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48: 365-377. https://doi.org/10.1111/j.1439-0507.2005.01165.x
  26. Schaller M, Schackert C, Korting HC, Januschke E, Hube B. 2000. Invasion of Candida albicans correlates with expression of secreted aspartic proteinases during experimental infection of human epidermis. J. Invest. Dermatol. 114: 712-717. https://doi.org/10.1046/j.1523-1747.2000.00935.x
  27. Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. 2012. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev. 36: 288-305. https://doi.org/10.1111/j.1574-6976.2011.00278.x
  28. Gow NA, Brown AJ, Odds FC. 2002. Fungal morphogenesis and host invasion. Curr. Opin. Microbiol. 5: 366-371. https://doi.org/10.1016/S1369-5274(02)00338-7
  29. Thompson DS, Carlisle PL, Kadosh D. 2011. Coevolution of morphology and virulence in Candida species. Eukaryot. Cell 10: 1173-1182. https://doi.org/10.1128/EC.05085-11
  30. Hoyer LL, Scherer S, Shatzman AR, Livi GP. 1995. Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol. Microbiol. 15: 39-54. https://doi.org/10.1111/j.1365-2958.1995.tb02219.x
  31. Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S. 1998. Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr. Genet. 33: 451-459.
  32. Rameau RD, Jackson DN, Beaussart A, Dufrene YF, Lipke PN. 2016. The human disease-associated $A{\beta}$ amyloid core sequence forms functional amyloids in a fungal adhesin. MBio 7: e01815-15.
  33. Ram sook CB, T an C , Garcia M C, F ung R, S oybelm an G, Henry R, et al. 2010. Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot. Cell 9: 393-404. https://doi.org/10.1128/EC.00068-09

Cited by

  1. Influence of Eugenia uniflora Extract on Adhesion to Human Buccal Epithelial Cells, Biofilm Formation, and Cell Surface Hydrophobicity of Candida spp. from the Oral Cavity of Kidney Transplant Rec vol.23, pp.10, 2018, https://doi.org/10.3390/molecules23102418
  2. Herbal Extracts with Antifungal Activity against Candida albicans: A Systematic Review vol.21, pp.1, 2018, https://doi.org/10.2174/1389557520666200628032116