DOI QR코드

DOI QR Code

Characterization and Bioactivities of a Novel Exopolysaccharide Produced from Lactose by Bacillus tequilensis PS21 Isolated from Thai Milk Kefir

  • Luang-In, Vijitra (Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University) ;
  • Saengha, Worachot (Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University) ;
  • Deeseenthum, Sirirat (Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University)
  • 투고 : 2017.12.29
  • 심사 : 2018.02.04
  • 발행 : 2018.03.28

초록

The aims of this work were to characterize and determine bioactivities of crude exopolysaccharide (EPS) extract from Bacillus tequilensis PS21 isolated from milk kefir from Kampaeng Petch, Thailand. B. tequilensis PS21 produced 112.1 mg dried EPS/l from initial 80 g/l lactose in modified TSB media at 52 h, with EPS product yield of 8.9 mg EPS/g lactose and specific product yield of 0.3 mg EPS/mg biomass. The FTIR result confirmed EPS to be a protein-bound polysaccharide and SEM analysis showed the morphology to be a grainy appearance with an uneven surface, covered with pores. HPLC analysis determined EPS as a heteropolysaccharide consisting of five sugar units with the following molar ratios; xylose (17.65), glucose (2.54), ribose (1.83), rhamnose (1.23), and galactose (1). Chemical components of this EPS were predominantly carbohydrate at 697.8 mg/g EPS (65%), protein 361.4 mg/g EPS (34%), and nucleic acid 12.5 mg/g EPS (1%). The EPS demonstrated antioxidant activities at 57.5% DPPH scavenging activity, $37.2{\mu}M\;Fe(II)/mg$ EPS and $34.9{\mu}M\;TEAC\;{\mu}M/mg$ EPS using DPPH, FRAP and ABTS assays, respectively. EPS also exhibited anti-tyrosinase activity at 34.9% inhibition. This work represents the first finding of EPS produced by Bacillus sp. from Thai milk kefir which shows potential applications in the production of antioxidant functional foods and whitening cosmetics. However, optimization of EPS production for industrial exploitation requires further study to ascertain the economic potential.

키워드

참고문헌

  1. Bourrie BC, Willing BP, Cotter PD. 2016. The microbiota and health promoting characteristics of the fermented beverage kefir. Front. Microbiol. 7: 647.
  2. Freitas F, Alves VD, Carvalheira M, Costa N, Oliveira R, Reis MA. 2009. Emulsifying behaviour and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol by product. Carbohydr. Polym. 78: 549-556. https://doi.org/10.1016/j.carbpol.2009.05.016
  3. Mahapatra S, Banerjee D. 2013. Fungal Exopolysaccharide: Production, composition and applications. Microbiol. Insights 6: 1-16.
  4. Parikh A, Madamwar D. 2006. Partial characterization of extracellular polysaccharides from Cyanobacteria. Bioresour. Technol. 97: 1822-1827. https://doi.org/10.1016/j.biortech.2005.09.008
  5. Sutherland IW. 2001. Microbial polysaccharides from gram-negative bacteria. Int. Dairy J. 11: 663-674. https://doi.org/10.1016/S0958-6946(01)00112-1
  6. Mota R, Guimaraes R, Buttel Z, Rossi F, Colica G, Silva CJ, et al. 2013. Production and characterization of extracellular carbohydrate polymer from Cyanothece sp. CCY 0110. Carbohydr. Polym. 92: 1408-1415. https://doi.org/10.1016/j.carbpol.2012.10.070
  7. Rimada PS, Abraham AG. 2006. Kefiran improves rheological properties of glucono-${\delta}$-lactone induced skim milk gels. Int. Dairy J. 16: 33-39. https://doi.org/10.1016/j.idairyj.2005.02.002
  8. Jones SE, Paynich ML, Knight KL. 2014. Exopolysaccharides: Sweet success with probiotic therapeutics. Inflamm. Cell Signal 1: e334.
  9. Wang K, Li W, Rui X, Chen X, Jiang M, Dong M. 2014. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int. J. Biol. Macromol. 63: 133-139. https://doi.org/10.1016/j.ijbiomac.2013.10.036
  10. Li S, Huang R, Shah NP, Tao X, Xiong Y, Wei H. 2014. Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. J. Dairy Sci. 97: 7334-7343.
  11. Luang-In V, Deeseenthum S. 2016. Exopolysaccharide-producing isolates from Thai milk kefir and their antioxidant activities. LWT-Food Sci. Technol. 73: 592-601. https://doi.org/10.1016/j.lwt.2016.06.068
  12. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
  13. Glasel J. 1995. Validity of nucleic acid purities monitored by 260/ 280 absorbance ratios. Biotechniques 18: 62-63.
  14. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Sith F. 1956. Calorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
  15. Ran H, Zhang J, Gao Q, Lin Z, Bao J. 2014. Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1. Biotechnol. Biofuels. 7: 51. https://doi.org/10.1186/1754-6834-7-51
  16. Akowuah GA, Ismail Z, Norhayati I, Sadikun A. 2005. The effects of different extraction solvents of varying polarities of polyphenols of Orthosiphon stamineus and evaluation of the free radicalscavenging activity. Food Chem. 93: 311-317.
  17. Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP Assay. Anal. Biochem. 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  18. Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, et al. 2006. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agric. Food Chem. 54: 9329-9339. https://doi.org/10.1021/jf061750g
  19. Choi HK, Lim YS, Kim YS, Park SY, Lee CH, Hwang KW, et al. 2008. Free-radical-scavenging and tyrosinase-inhibition activities of Cheonggukjang samples fermented for various times. Food Chem. 106: 564-568. https://doi.org/10.1016/j.foodchem.2007.06.024
  20. Wang H, Jiang X, Mu H, Liang X, Guan H. 2007. Structure and protective effect of exopolysaccharide from P. Agglomerans strain KFS-9 against UV radiation. Microbiol. Res. 162: 124-129. https://doi.org/10.1016/j.micres.2006.01.011
  21. Wang Y, Li C, Liu P, Ahmed Z, Xiao P, Bai X. 2010. Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet kefir. Carbohydr. Polym. 82: 895-903. https://doi.org/10.1016/j.carbpol.2010.06.013
  22. Haxaire K, Marechal Y, Milas M, Rinaudo M. 2003. Hydration of polysaccharide hyaluronan observed by IR spectrometry. I. Preliminary experiments and band assignments. Biopolymers 72: 10-20.
  23. Rao BP, Sudharsan K, Sekaran RCHG, Mandal AB. 2013. Characterization of exopolysaccharide from Bacillus amyloliquefaciens BPRGS for its bioflocculant activity. Int. J. Sci. Eng. Res. 4: 1696- 1704.
  24. Fusconi R, Godinho MJL. 2002. Screening for exopolysaccharideproducing bacteria from sub-tropical polluted groundwater. Braz. J. Biol. 62: 363-369. https://doi.org/10.1590/S1519-69842002000200020
  25. Vijayabaskar P, Babinastarlin S, Shankar T, Sivakumar T, Anandapandian KTK. 2011. Quantification and characterization of exopolysaccharides from Bacillus subtilis (MTCC 121). Adv. Biol. Res. 5: 71-76.
  26. Abdel-Fattah AM, Gamal-Eldeen AM, Helmy WA, Esawy MA. 2012. Antitumor and antioxidant activities of levan and its derivative from the isolate Bacillus subtilis NRC1aza. Carbohydr. Polym. 89: 314-322. https://doi.org/10.1016/j.carbpol.2012.02.041
  27. Yang H, Deng J, Yuan Y, Fan D, Zhang Y, Zhang R, et al. 2015. Two novel exopolysaccharides from Bacillus amyloliquefaciens C-1: Antioxidation and effect on oxidative stress. Curr. Microbiol. 70: 298-306.
  28. Parthiban K, Vignesh V, Thirumurugan R. 2014. Characterization and in vitro studies on anticancer activity of exopolymer of Bacillus thuringiensis S13. Afr. J. Biotechnol. 13: 2137-2144. https://doi.org/10.5897/AJB2014.13741
  29. Semjonovs P, Zikmanis P. 2008. Evaluation of novel lactose positive and exopolysaccharide-producing strain of Pediococcus pentosaceus for fermented foods. Eur. Food Res. Technol. 227: 851-856. https://doi.org/10.1007/s00217-007-0796-4
  30. Rani RP, Anandharaj M, Sabhapathy P, Ravindran AD. 2017. Physiochemical and biological characterization of novel exopolysaccharide produced by Bacillus tequilensis FR9 isolated from chicken. Int. J. Biol. Macromol. 96: 1-10. https://doi.org/10.1016/j.ijbiomac.2016.11.122
  31. Kodali VP, Sen R. 2008. Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol. J. 3: 245-251. https://doi.org/10.1002/biot.200700208
  32. Vidhyalakshmi R, Valli NC, Kumar GN, Sunkar S. 2016. Bacillus circulans exopolysaccharide: Production, characterization and bioactivities. Int. J. Biol. Macromol. 87: 405-414. https://doi.org/10.1016/j.ijbiomac.2016.02.001
  33. Yu L, Xu S, Deng C, Li H, Yang Q, Xu Z, et al. 2016. Preparation and partial structural characterization of the exopolysaccharide from Bacillus mucilaginosus SM-01. Carbohydr. Polym. 146: 217-223. https://doi.org/10.1016/j.carbpol.2016.03.038
  34. Nicolaus B, Kambourova M, Oner ET. 2010. Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ. Technol. 31: 1145-1158. https://doi.org/10.1080/09593330903552094
  35. Freitas F, Alves, VD, Pais J, Carvalheira M, Costa N, Oliveira R, et al. 2010. Production of a new exopolysaccharide (EPS) by Pseudomonas oleovorans NRRL B-14682 grown on glycerol. Process Biochem. 45: 297-305. https://doi.org/10.1016/j.procbio.2009.09.020
  36. Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, et al. 2013. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 54: 270-275. https://doi.org/10.1016/j.ijbiomac.2012.12.037
  37. Zheng LP, Zou T, Ma YJ, Wang JW, Zhang YQ. 2016. Antioxidant and DNA damage protecting activity of exopolysaccharides from the endophytic bacterium Bacillus cereus SZ1. Molecules 21: 174.
  38. Asker MMS, Ahmed YM, Ramadan MF. 2009. Chemical characteristics and antioxidant activity of exopolysaccharide fractions from Microbacterium terregens. Carbohydr. Polym. 77: 563-567. https://doi.org/10.1016/j.carbpol.2009.01.037
  39. Sun C, Wang JW, Fang L, Gao XD, Tan RX. 2004. Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108. Life Sci. 75: 1063-1073. https://doi.org/10.1016/j.lfs.2004.02.015
  40. Sakanaka S, Tachibana Y, Okada Y. 2005. Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha- cha). Food Chem. 89: 569-575. https://doi.org/10.1016/j.foodchem.2004.03.013
  41. Song YR, Song NE, Kim JH, Nho YC, Baik SH. 2011. Exopolysaccharide produced by Bacillus licheniformis strains isolated from Kimchi. J. Gen. Appl. Microbiol. 57: 169-175. https://doi.org/10.2323/jgam.57.169

피인용 문헌

  1. Microbial Strains and Bioactive Exopolysaccharide Producers from Thai Water Kefir vol.46, pp.4, 2018, https://doi.org/10.4014/mbl.1804.04019
  2. Optimization of exopolysaccharide production by probiotic yeast Lipomyces starkeyi VIT-MN03 using response surface methodology and its applications vol.69, pp.5, 2018, https://doi.org/10.1007/s13213-019-1440-9
  3. A New Strain of Bacillus tequilensis CGMCC 17603 Isolated from Biological Soil Crusts: A Promising Sand-Fixation Agent for Desertification Control vol.11, pp.22, 2018, https://doi.org/10.3390/su11226501
  4. Stereometric characterization of kefir microbial films associated with Maytenus rigida extract vol.83, pp.11, 2020, https://doi.org/10.1002/jemt.23532
  5. Psychobiotic Effects of Multi-Strain Probiotics Originated from Thai Fermented Foods in a Rat Model vol.40, pp.6, 2020, https://doi.org/10.5851/kosfa.2020.e72
  6. Genome Mining Associated with Analysis of Structure, Antioxidant Activity Reveals the Potential Production of Levan-Rich Exopolysaccharides by Food-Derived Bacillus velezensis VTX20 vol.11, pp.15, 2021, https://doi.org/10.3390/app11157055