DOI QR코드

DOI QR Code

An Architecture for Managing Faulty Sensing Data on Low Cost Sensing Devices over Manufacturing Equipments

전문 설비의 이상신호 처리를 위한 저비용 관제 시스템 구축

  • 채유나 (동국대학교 정보통신공학과) ;
  • 김창규 (동국대학교 정보통신공학과) ;
  • 고하람 (동국대학교 정보통신공학과) ;
  • 김웅섭 (동국대학교 정보통신공학과)
  • Received : 2017.12.18
  • Accepted : 2018.01.28
  • Published : 2018.03.31

Abstract

In this study, we proposed a monitoring system for identifying and handling faulty sensing stream data on manufacturing equipments where low-cost sensors can be safely used. Low cost sensors will lessen the cost of implementing distributed monitoring system, but suffer from sensor noises and inaccurate sensed data. Therefore, a distributed monitoring system with low cost sensors should identify faulty signal data as either of sensor fault or machine fault, and filter out faulty signals from sensing fault. To this end, we adopted a fourier transform based diagnostic approach mixed with a weighed moving averaging method, in order to identify faulty signals. We measured how effective our approach is and found out our approach can filter out one-third faulty signals from our experimental environment. In addition, we attached wireless communication modules to reduce sensor and network installation cost. To handle massive sensor data efficiently, we employed unstructured data format with NoSQL based database.

본 연구에서는 공장 내부의 설비의 동작의 이상 유무를 저가의 센서를 사용하여 모니터링하고 이를 확인할 수 있도록 하는 시스템을 구현하였다. 저가의 센서들은 저렴한 비용으로 넓은 장소에 다량의 기기들에 설치할 수 있다는 장점을 가지지만 센서의 오작동 및 센서의 정확성 문제로 정확한 감시와 확인이 어려워진다는 단점을 가진다. 따라서 저가의 센서를 사용하게 되면 생산설비에서 발생하는 데이터로부터 이상 값을 구분하여 이상상황에 대한 센서의 오작동인지 또는 설비의 고장인지 여부를 판단하고 이를 알람을 통해 확인할 수 있는 모니터링 시스템이 필수로 구축되어야 한다. 본 연구에서 우리는 저가의 센서들에서 감지된 정상 범위를 벗어나는 데이터 값에서 센서의 오작동과 설비의 고장여부를 구분할 수 있는 시스템을 구현하였으며 이를 위해 우리는 가중이동 평균법과 푸리에 변환 기반 신호 검증 시스템을 혼합한 시스템을 설계 구현하였다. 이를 통해 설비에서 정상범위를 벗어나는 값들이 감지되는 경우 이들을 기기의 이상과 센서의 이상 상황으로 구분할 수 있도록 하였으며 실험결과 전체 이상 신호 값 중에 1/3에 해당하는 부분을 센서의 이상 상황으로 분류 정상처리하고 있음을 확인할 수 있었다. 또한 우리는 모니터링 시스템의 구축 비용 절감을 위해 정보를 무선통신으로 전송하도록 하였으며 작동 센싱 정보들을 비정형 데이터로 구현 처리하도록 하여 다수의 센서에서 수집된 대규모의 정보들을 효율적으로 처리할 수 있도록 하였다.

Keywords

References

  1. GMA 7.21: Industrie 4.0 Service Architecture Basic Concepts for Interoperability. VDI/VDE 2016.
  2. Federal Ministry for Economic Affairs and Energy and Plattform, Industrie 4.0, "Ergebnispapier - Aspekte der Forschungsroadmap in den Anwendungsprozessen." [Online]. Available: https://www.plattformi40.de/I40/Redaktion/DE/Downloads/Publikation/anwendungsszenarienauf-forschungsroadmap.pdf? blob=publicationFile&v=14.
  3. DIN, "Reference Architecture Model Industrie 4.0 (RAMI4.0)," 2016.
  4. F. Zhang, M. Liu, Z. Zhou, and W. Shen, "An IoT based online monitoring system for continuous steel casting," IEEE Internet of Things Journal, Vol.3, No.6, pp.1355-1363, 2016. https://doi.org/10.1109/JIOT.2016.2600630
  5. J. Lee, E. Lapira, B. Bagheri, and H. A. Kao, "Recent advances and trends in predictive manufacturing systems in big data environment," Manufacturing Letters, Vol.1, No.1, pp.38-41, 2013. https://doi.org/10.1016/j.mfglet.2013.09.005
  6. G. Xiong, F. Zhu, X. Liu, X. Dong, W. Huang, S. Chen, et al., "Cyberphysical-social system in intelligent transportation," IEEE/CAA Journal of Automatica Sinica, Vol.2, No.3, pp.320-333, 2015. https://doi.org/10.1109/JAS.2015.7152667
  7. D. Chen, "A methodology for developing service in virtual manufacturing environment," Annual Reviews in Control, Vol. 39, pp.102-117, 2015. https://doi.org/10.1016/j.arcontrol.2015.03.010
  8. F. Tao, Y. Cheng, L. D. Xu, and L. Zhang, "CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system," IEEE Transactions on Industrial Informatics, Vol.10, No.2, pp.1435-1442, 2014. https://doi.org/10.1109/TII.2014.2306383
  9. C. Yang, W. Shen, T. Li, and X. Wang, "A hybrid framework for integrating multiple manufacturing clouds," International Journal of Advanced Manufacturing Technologies, Vol.86, No. 1, pp.895-911, 2016. https://doi.org/10.1007/s00170-015-8177-9
  10. P. Colombo and E. Ferrari, "Enhancing MongoDB with Purpose-Based Access Control," IEEE Transactions on Dependable and Secure Computing, Vol.14, No.6, pp.591-604, 2017. https://doi.org/10.1109/TDSC.2015.2497680
  11. S. Khan, and V. Mane, "SQL support over MongoDB using metadata," International Journal of Scientific and Research Publications, Vol.3, No.10, pp.1-5, 2013.
  12. S. V. Volvenko, D. Ge, S. V. Zavjalov, A. S. Gruzdev, A. V. Rashich, and E. L. Svechnikov, "Experimental wireless ultra wideband sensor network for data collection," 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), pp.965-970, 2017.
  13. C. Yang, D. Puthal, S. P. Mohanty, and E. Kougianos, "Big-Sensing-Data Curation for the Cloud is Coming: A Promise of Scalable Cloud-Data-Center Mitigation for Next-Generation IoT and Wireless Sensor Networks," IEEE Consumer Electronics Magazine, Vol.6, No.4, pp.48-56, 2017.
  14. A. Gnana Soundari and V. L. Jyothi, "Self organized intellient node for decision making in sensor network," The Third International Conference on Science Technology Engineering & Management (ICONSTEM), pp.315-317, 2017.
  15. K.-W. Lee and C.-G. Sung, "An Implementation of Context Data Monitoring System based on Ubiquitous Sensor Network," Journal of The Korea Society of Computer and Information (JKSCI), Vol.11, No.5, pp.259-265, 2006.
  16. Suan Lee, Jinho Kim, Sung-Hyun Shin, and Si-Byung Nam, "Implementation of Storage Manager to Maintain Efficiency Stream Data in Ubiquitous Sensor Network," Journal of the Institute of Electronis and Information Engineers, pp 259-265, 2006.
  17. Seong Ho Choi, Hyung-Kun Park, Yun Seop Yu, "Design and Implementation of Ubiquitous Sensor Network System for Monitoring the Bio-information and Emergency of the Elderly in Silver Town," Journal of Information and Communication Convergence Engineering, Vol.8, No.2, pp.219-222, 2010. https://doi.org/10.6109/jicce.2010.8.2.219
  18. Beomjun Park and Joon Cheol Kwon, "RFID/USN and Ubiquitous-City Information System," The Journal of Korean Institute of Communications and Information Sciences, Vol.22, No.7, pp.81-90, 2005.
  19. L. M. Ni, "China's national research project on wireless sensor networks," Proceedings of the 2008 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC'08), p.19, 2008.
  20. Tae Su Kim, Dong Uk Kim, and Yong-seok Kim, "Low Overhead System Monitoring Based on SNMP for Embedded Systems." Journal of the Institute of Electronis and Information Engineers, Vol.43, No.3, pp.1-9, 2006.
  21. T., Arici, and Y. Altunbasak, "Adaptive sensing for environment monitoring using wireless sensor networks," In Wireless Communications and Networking Conference, 2004. WCNC. 2004 IEEE (Vol.4, pp.2347-2352). IEEE.
  22. Joon-Tae Oh and Gyu-Sik Kim, "Environmental Sensor Monitoring System of Subway Stations Using USN," Journal of the Institute of Electronis and Information Engineers, Vol.48, No.3, pp.60-66, 2011.
  23. Tae-Yun Chung, Han-Su Chung, Hyung-Bong Lee, Lae-Jeong Park, and Jung-Ho Moon, "Implementation of A Remote Fire Monitoring System Based on Bidirectional USN," Journal of Embedded Systems and Applications, Vol.2, No.2, pp.107-115, 2007.
  24. Wan-Ki Kim and Jeong-Hun Choi, "Development of a Monitoring System Authoring Tool for USN," Journal of Embedded Systems and Applications, Vol.2, No.2, pp.101-106, 2007.
  25. Yejin Hong, Eunhee Nah, Yongwhan Cheong, and Yangwoo Kim, "Outlier Detection Based on MapReduce for Analyzing Big Data," Journal of Internet Computing and Services, Vol.18, No.1, pp.27-35, 2017. https://doi.org/10.7472/jksii.2017.18.1.27
  26. Woo Hyung Choi, Hyun Sook Whang, and Chang Soo Kim, "The Study on the Design of the Integrated Monitoring System of Facilities in Data Center," Journal of Korea Institute of Information and Communication Engineering, Vol.19, No.4, pp.909-916, 2015. https://doi.org/10.6109/jkiice.2015.19.4.909
  27. M. H. Berlian, T. E. R. Sahputra, B. J. W. Ardi, L. W. Dzatmika, A. R. A. Besari, R. W. Sudibyo, and S. Sukaridhoto, "Design and implementation of smart environment monitoring and analytics in real-time system framework based on internet of underwater things and big data," 2016 International Electronics Symposium (IES), pp.403-408, 2016.
  28. X. Zhang, P. Wu, and C. Tan, "A big data framework for spacecraft prognostics and health monitorin," 2017 Prognostics and System Health Management Conference (PHM-Harbin), pp.1-7, 2017.