DOI QR코드

DOI QR Code

Noise-Robust Porcine Respiratory Diseases Classification Using Texture Analysis and CNN

질감 분석과 CNN을 이용한 잡음에 강인한 돼지 호흡기 질병 식별

  • 최용주 (고려대학교 컴퓨터정보학과) ;
  • 이종욱 (고려대학교 컴퓨터정보학과) ;
  • 박대희 (고려대학교 컴퓨터정보학과) ;
  • 정용화 (고려대학교 컴퓨터정보학과)
  • Received : 2017.12.08
  • Accepted : 2018.01.24
  • Published : 2018.03.31

Abstract

Automatic detection of pig wasting diseases is an important issue in the management of group-housed pigs. In particular, porcine respiratory diseases are one of the main causes of mortality among pigs and loss of productivity in intensive pig farming. In this paper, we propose a noise-robust system for the early detection and recognition of pig wasting diseases using sound data. In this method, first we convert one-dimensional sound signals to two-dimensional gray-level images by normalization, and extract texture images by means of dominant neighborhood structure technique. Lastly, the texture features are then used as inputs of convolutional neural networks as an early anomaly detector and a respiratory disease classifier. Our experimental results show that this new method can be used to detect pig wasting diseases both economically (low-cost sound sensor) and accurately (over 96% accuracy) even under noise-environmental conditions, either as a standalone solution or to complement known methods to obtain a more accurate solution.

집단으로 사육되는 돼지 농장에서 돼지 소모성 질환의 자동 탐지는 매우 중요한 문제이다. 특히, 밀집된 돈사에서 사육되는 돼지들의 호흡기 질환은 축산 농가의 막대한 경제적 손실을 야기하는 대표적 질병들 중 하나이다. 본 논문에서는 소리 신호 해석에 기반하여 돼지의 호흡기 질환을 조기 탐지 및 식별하는 잡음에도 강인한 시스템을 제안한다. 제안하는 시스템은, 먼저 1차원의 소리 신호를 2차원의 회색조 영상으로 변환한 후, DNS기법으로 질감 특징 정보를 갖는 이미지를 생성한다. 마지막으로, 이를 CNN에 입력함으로써 잡음에도 강인한 돼지 호흡기 질병 탐지 및 식별 시스템을 구현하고자 한다. 실제 국내 돈사에서 취득한 돼지의 발성음을 이용하여 제안하는 시스템의 성능을 실험적으로 검증한바, 제안된 시스템은 경제적인 비용(저가의 소리 센서)과 시스템 정확도(96.0% 정확도)로 다양한 잡음 환경에서도 돼지의 호흡기 질병들을 탐지할 수 있음을 실험적으로 확인하였다. 제안된 시스템은 독자적인 혹은 기존 방법들의 보완책으로 사용될 수 있다.

Keywords

References

  1. M. Ju, H. Baek, J. Sa, H. Kim, Y. Chung, and D. Park, "Real-time pig segmentation for individual pig monitoring in a weaning pig room," Journal of Korea Multimedia Society, Vol.19, No.2, pp.215-223, 2016. https://doi.org/10.9717/kmms.2016.19.2.215
  2. I. H. Seo, I. B. Lee, O. K. Moon, and K. S. Kwon, "Aerodynamic approaches for estimation of waste disease spread in pig farm through airborne contaminants," Journal of Korean Society of Agricultural Engineers, Vol.56, No.1, pp.41-49, 2014. https://doi.org/10.5389/KSAE.2014.56.1.041
  3. D. Huh and B. J. Woo, "Impact of swine wasting disease on farm income," Journal of Rural Development, pp.77-88, 2008.
  4. J. Choi, J. Lee, D. Park, and Y. Chung, "Individual pig detection using kinect depth information," KIPS Transaction on Computer and Communication Systems, Vol.5, No.10, pp.319-326, 2016. https://doi.org/10.3745/KTCCS.2016.5.10.319
  5. M. Rizwan, B. T, Carroll, D. V. Anderson, W. Daley, S. Harbert, D. F. Britton, and M. W. Jackwood, "Identifying rale sounds in chickens using audio signals for early disease detection in poultry," Signal and Information Processing on IEEE Global Conference, pp.55-59, 2016.
  6. J. Lee, B. Noh, S. Jang, D. Park, Y. Chung, and H. H. Chang, "Stress detection and classification of laying hens by sound analysis," Asian-Australasian Journal of Animal Sciences, Vol.28, No.4, pp.592-598, 2015. https://doi.org/10.5713/ajas.14.0654
  7. Y. Chung, J. Lee, S. Oh, D. Park, H. H. Chang, and S. Kim, "Automatic detection of cow's oestrus in audio surveillance system," Asian-Australasian Journal of Animal Sciences, Vol.26, No.7, pp.1030-1037, 2013. https://doi.org/10.5713/ajas.2012.12628
  8. J. Vandermeulen, C. Bahr, D. Johnston, B. Earley, E. Tullo, I. Fontana, and D. Berckmans, "Early recognition of bovine respiratory disease in calves using automated continuous monitoring of cough sounds," Computers and Electronics in Agriculture, Vol.129, pp.15-26. 2016. https://doi.org/10.1016/j.compag.2016.07.014
  9. M. Guarino, P. Jans, A. Costa, J. M. Aerts, and D. Berckmans, "Field test of algorithm for automatic cough detection in pig houses," Computers and electronics in agriculture, Vol.62, No.1, pp.22-28, 2008. https://doi.org/10.1016/j.compag.2007.08.016
  10. Y. Chung, S. Oh, J. Lee, D. Park, H. Chang, and S. Kim, "Automatic detection and recognition of pig wasting diseases using sound data in audio surveillance," Sensors, Vol.13, No.10, pp.12929-12942, 2013. https://doi.org/10.3390/s131012929
  11. J. Lee, L. Jin, D. Park, Y. Chung, and H. H. Chang, "Acoustic features for pig wasting disease detection," International Journal of Information Processing and Management, Vol.6, No.1, pp.37-46, 2015.
  12. F. Khellah, "Texture classification using dominant neighborhood structure," IEEE Transaction on Image Processing, Vol.21, No.11, pp.3270-3279, 2011.
  13. F. Khellah, "Textured image denoising using dominant neighborhood structure," Arabian Journal for Science and Engineering, Vol.39, No.5, pp.3759-3770, 2014. https://doi.org/10.1007/s13369-014-1057-z
  14. M. Kang, I. Jeong, B. Choi, and J. Kim, "Multiple faults diagnosis in induction motors using two-dimensional texture features and support vector machine of vibration signals," Korean Institute of Next Generation Computing Journal, Vol.9, No.6, pp.24-34, 2013.
  15. I. Choi, H. Song, S. Lee, and J. Yoo, "Facial expression classification using deep convolutional neural network," Journal of Broadcast Engineering, Vol.222, pp.162-172, 2017.
  16. Z. Wangm, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Transaction on Image Processing, Vol.13, No.4, pp.600-612, 2014.
  17. J. Jang and Y. Kim, "The study of image quality evaluation and compression method using contourlet transform," Journal of the Semiconductor and Display Technology, Vol.9, No.4, pp.57-61, 2010.
  18. TensorFlow ver.1.21. http://www.tensorflow.org (Accessed: 09. Aug. 2017)
  19. J. Han, M. Kamber, and J. Pei, "Data mining: concepts and techniques," 3rd ed., San Francisco, Morgan Kaufmann Pub., USA, 2012.