DOI QR코드

DOI QR Code

Numerical study on axially loaded ultra-high strength concrete-filled dual steel columns

  • Pons, David (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia) ;
  • Espinos, Ana (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia) ;
  • Albero, Vicente (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia) ;
  • Romero, Manuel L. (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia)
  • 투고 : 2017.10.03
  • 심사 : 2018.01.12
  • 발행 : 2018.03.25

초록

This paper presents a numerical investigation on the mechanical performance of concrete-filled dual steel tubular columns of circular section subjected to concentric axial load. A three-dimensional numerical model is developed and validated against a series of experimental tests. A good agreement is obtained between the experimental and numerical results, both in the peak load value and in the ascending and descending branches of the load-displacement curves. By means of the numerical model, a parametric study is carried out to investigate the influence of the main parameters that determine the axial capacity of double-tube columns, such as the member slenderness, inner and outer steel tube thicknesses and the concrete grade - of both the outer concrete ring and inner core -, including ultra-high strength concrete. A total number of 163 numerical simulations are carried out, by combining the different parameters. Specific indexes are defined (Strength Index, Concrete-Steel Contribution Ratio, Inner Concrete Contribution Ratio) to help rating the relative mechanical performance of dual steel tubular columns as compared to conventional concrete-filled steel tubular columns, and practical design recommendations are subsequently given.

키워드

참고문헌

  1. ABAQUS (2014), ABAQUS/Standard Version 6.14 User's Manual: Volumes I-III, Pawtucket, Rhode Island, Hibbitt, Karlsson & Sorensen, Inc.
  2. ACI (2011), Building code requirements for structural concrete (ACI 318-11), American Concrete Institute, Farmington Hills, MI, USA.
  3. An, Y.-F., Han, L.-H. and Zhao, X.-L. (2012), "Behaviour and design calculations on very slender thin-walled CFST columns", Thin-Wall. Struct., 53, 161-175. https://doi.org/10.1016/j.tws.2012.01.011
  4. Binici, B. (2005), "An analytical model for stress-strain behavior of confined concrete", Eng. Struct., 27(7), 1040-1051. https://doi.org/10.1016/j.engstruct.2005.03.002
  5. CEN (2004a), EN 1992-1-1, Eurocode 2: Design of concrete structures. Part 1-1: General rules and rules for buildings; Comite Europeen de Normalisation, Brussels, Belgium.
  6. CEN (2004b), EN 1994-1-1, Eurocode 4: Design of composite steel and concrete structures. Part 1-1: General rules and rules for buildings; Comite Europeen de Normalisation, Brussels, Belgium.
  7. CEN (2005), EN 1993-1-1, Eurocode 3: Design steel structures. Part 1-1: General rules and rules for buildings; Comite Europeen de Normalisation, Brussels, Belgium.
  8. CEN (2006a), EN 10210-1: Hot finished structural hollow sections of non-alloy and fine grain steels - Part 1: Technical delivery conditions; ComiteEuropeen de Normalisation, Brussels, Belgium.
  9. CEN (2006b), EN 10210-2: Hot finished structural hollow sections of non-alloy and fine grain steels - Part 2: Tolerances, dimensions and sectional properties; Comite Europeen de Normalisation, Brussels, Belgium.
  10. Chen, J., Ni, Y.-Y. and Jin, W.-L. (2015), "Column tests of dodecagonal section double skin concrete-filled steel tubes", Thin-Wall. Struct., 88, 28-40. https://doi.org/10.1016/j.tws.2014.11.013
  11. Elchalakani, M., Zhao, X.-L. and Grzebieta, R. (2002), "Tests on concrete filled double-skin (CHS outer and SHS inner) composite short columns under axial compression", Thin-Wall. Struct., 40(5), 415-441. https://doi.org/10.1016/S0263-8231(02)00009-5
  12. Espinos, A., Romero, M.L. and Hospitaler, A. (2010), "Advanced model for predicting the fire response of concrete filled tubular columns", J. Constr. Steel Res., 66(8-9), 1030-1046. https://doi.org/10.1016/j.jcsr.2010.03.002
  13. Espinos, A., Romero, M.L., Serra, E. and Hospitaler, A. (2015), "Circular and square slender concrete-filled tubular columns under large eccentricities and fire", J. Constr. Steel Res., 110, 90-100. https://doi.org/10.1016/j.jcsr.2015.03.011
  14. Essopjee, Y. and Dundu, M. (2015), "Performance of concretefilled double-skin circular tubes in compression", Compos. Struct., 133, 1276-1283. https://doi.org/10.1016/j.compstruct.2015.08.033
  15. Galambos, T.V. and Surovek, A.E. (2008), Structural Stability of Steel: Concepts and Applications for Structural Engineers, Wiley.
  16. Hajjar, J. and Gourley, B. (1996), "Representation of concretefilled steel tube cross-section strength", J. Struct. Eng., 122(11), 1327-1336. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1327)
  17. Han, L.H. and Huo, J.S. (2003), "Concrete-filled hollow structural steel columns after exposure to ISO-834 fire standard", J. Struct. Eng., 129, 68-78.
  18. Han, L.-H., Yao, G.-H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin-Wall. Struct., 45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008
  19. Han, L.-H., Huang, H. and Zhao, X.-L. (2009), "Analytical behaviour of concrete-filled double skin steel tubular (CFDST) beam-columns under cyclic loading", Thin-Wall. Struct., 47(6-7), 668-680. https://doi.org/10.1016/j.tws.2008.11.008
  20. Han, L.-H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016
  21. Hassanein, M.F., Kharoob, O.F. and Liang, Q.Q. (2013), "Circular concrete-filled double skin tubular short columns with external stainless steel tubes under axial compression", Thin-Wall. Struct., 73, 252-263. https://doi.org/10.1016/j.tws.2013.08.017
  22. Hassanein, M.F., Kharoob, O.F. and Gardner, L. (2015), "Behaviour and design of square concrete-filled double skin tubular columns with inner circular tubes", Eng. Struct., 100, 410-424. https://doi.org/10.1016/j.engstruct.2015.06.022
  23. Hu, H.-T. and Su, F.-C. (2011), "Nonlinear analysis of short concrete-filled double skin tube columns subjected to axial compressive forces", Marine Struct., 24(4), 319-337. https://doi.org/10.1016/j.marstruc.2011.05.001
  24. Ibanez, C., Romero, M.L., Espinos, A., Portoles, J.M. and Albero, V. (2017), "Ultra-high Strength Concrete on Eccentrically Loaded Slender Circular Concrete-filled Dual Steel Columns", Structures, 12, 64-74. https://doi.org/10.1016/j.istruc.2017.07.005
  25. Liang, Q.Q. (2009), "Strength and ductility of high strength concrete-filled steel tubular beam-columns", J. Constr. Steel Res., 65(3), 687-698. https://doi.org/10.1016/j.jcsr.2008.08.005
  26. Liang, Q.Q. and Fragomeni, S. (2009), "Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading", J. Constr. Steel Res., 65(12), 2186-2196. https://doi.org/10.1016/j.jcsr.2009.06.015
  27. Menegotto, M. and Pinto, P.E. (1973), "Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending", Proceedings of IABSE Symposium; Resistance and ultimate deformability of structures acted on by well defined repeated loads, Lisbon, Portugal, 13, pp. 15-22.
  28. Pagoulatou, M., Sheehan, T., Dai, X.H. and Lam, D. (2014), "Finite element analysis on the capacity of circular concretefilled double-skin steel tubular (CFDST) stub columns", Eng. Struct., 72, 102-112.
  29. Pons Aliaga, D. (2016), "Estudio numerico de la capacidad portante de columnas mixtas con doble tubo rellenas de hormigon", Doctoral Thesis; Universitat Politecnica de Valencia. [In Spanish]
  30. Portoles, J.M., Romero, M.L., Bonet, J.L. and Filippou, F.C. (2011a), "Experimental study of high strength concrete-filled circular tubular columns under eccentric loading", J. Constr. Steel Res., 67(4), 623-633. https://doi.org/10.1016/j.jcsr.2010.11.017
  31. Portoles, J.M., Romero, M.L., Filippou, F.C. and Bonet, J.L. (2011b), "Simulation and design recommendations of eccentrically loaded slender concrete-filled tubular columns", Eng. Struct., 33(5), 1576-1593. https://doi.org/10.1016/j.engstruct.2011.01.028
  32. Romero, M.L., Espinos, A., Portoles, J.M., Hospitaler, A. and Ibanez, C. (2015), "Slender double-tube ultra-high strength concrete-filled tubular columns under ambient temperature and fire", Eng. Struct., 99, 536-545. https://doi.org/10.1016/j.engstruct.2015.05.026
  33. Romero, M.L., Ibanez, C., Espinos, A., Portoles, J.M. and Hospitaler, A. (2017), "Influence of ultra-high strength concrete on circular concrete-filled dual steel columns", Structures, 9, 13-20. https://doi.org/10.1016/j.istruc.2016.07.001
  34. Samani, A.K. and Attard, M.M. (2012), "A stress-strain model for uniaxial and confined concrete under compression", Eng. Struct., 41, 335-349. https://doi.org/10.1016/j.engstruct.2012.03.027
  35. Tao, Z., Han, L.H. and Zhao, X.L. (2004), "Behaviour of concretefilled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns", J. Constr. Steel Res., 60(8), 1129-1158. https://doi.org/10.1016/j.jcsr.2003.11.008
  36. Tao, Z., Wang, Z.-B. and Yu, Q. (2013), "Finite element modelling of concrete-filled steel stub columns under axial compression", J. Constr. Steel Res., 89, 121-131. https://doi.org/10.1016/j.jcsr.2013.07.001
  37. Zhao, X.L. and Han, L.H. (2006), "Double skin composite construction", Progress in Structural Engineering and Materials, 8(3), 93-102. https://doi.org/10.1002/pse.216
  38. Zhao, X.L., Grzebieta, R.H. and Elchalakani, M. (2002), "Tests of concrete-filled double skin CHS composite stub columns", Steel Compos. Struct., Int. J., 2(2), 129-142. https://doi.org/10.12989/scs.2002.2.2.129

피인용 문헌

  1. Behavior of an Innovative Square Composite Column Made of Four Steel Tubes at the Corners and Corrugated Steel Batten Plates on all Sides vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/2971962
  2. Analysis of Mechanical Characteristics of Steel-Concrete Composite Flat Link Slab on Simply-Supported Beam Bridge vol.23, pp.8, 2018, https://doi.org/10.1007/s12205-019-1921-1
  3. RETRACTED ARTICLE: Repair of Buckled Concrete Filled Steel Tube Columns Subjected to Axial Compression vol.24, pp.5, 2018, https://doi.org/10.1007/s12205-020-0321-x
  4. Strength prediction of corrosion reinforced concrete columns strengthened with concrete filled steel tube under axial compression vol.37, pp.4, 2020, https://doi.org/10.12989/scs.2020.37.4.481
  5. Numerical Investigation of Composite Behavior and Strength of Rectangular Concrete-Filled Cold-Formed Steel Tubular Stub Columns vol.14, pp.20, 2018, https://doi.org/10.3390/ma14206221