DOI QR코드

DOI QR Code

Field Loss Analysis and Cooling Analysis of HTS Synchronous Motor

고온초전도 동기모터의 계자손실 해석 및 냉각 해석

  • Kim, Ki-Chan (Department of Electrical Engineering, Hanbat National University) ;
  • Lee, Dae-Dong (Department of Electrical Engineering, Hanbat National University)
  • Received : 2018.01.05
  • Accepted : 2018.03.09
  • Published : 2018.03.31

Abstract

Large industrial motors require a large area because of the high risk of shutdown accidents and large industrial accidents due to the lowering of the dielectric strength of the armature windings and overheating problems. Therefore, there is a demand for a large-capacity motor that has small size, light weight, and excellent dielectric strength compared with conventional motors. Superconducting motors have advantages of high efficiency and output power, low size, low weight, and improved stability. This results from greatly increasing the magnetic field generation by using superconductive field coils in rotating machines such as generators and motors. It is very important to design and analyze the cooling system to lower the critical temperature of the wires to achieve superconducting performance. In this study, a field loss analysis and low-temperature heat transfer analysis of the cooling system were performed through the conceptual design of a 100-HP high-temperature superconducting synchronous motor. The field loss analysis shows that a uniform pore magnetic flux density appears when high-temperature superconducting wire is used. The low-temperature heat transfer analysis for gaseous neon and liquid neon showed that a flow rate of 1 kg/min of liquid neon is suitable for maintaining low-temperature stability of the high-temperature superconducting wire.

산업현장에서 사용되는 대형 모터는 전기자권선의 절연내력 저하 및 과열문제 등으로 인하여 정지사고의 위험이 높고 산업재해의 규모가 크므로 넓은 장소의 확보가 필요하다. 따라서 기존 모터에 비해 소형, 경량이면서 절연내력이 뛰어난 대용량 모터가 요구되어지고 있으며 이에 대한 연구가 활발히 진행되어지고 있다. 초전도 모터는 기존의 발전기나 모터와 같은 회전기의 계자코일을 초전도 화하여 계자의 발생을 크게 증가시킴으로서, 기기의 효율과 출력을 높이고, 소형화 및 경량화, 안정도 향상 등의 장점을 가지고 있으므로 초전도 선재의 성능을 발휘할 수 있도록 선제의 임계온도 이하로 낮추어줄 수 있는 냉각시스템의 설계 및 해석기술이 매우 중요하다. 따라서 본 연구에서는 100HP 고온초전도 동기모터의 개념설계를 통한 계자손실 해석과 냉각시스템의 저온 열전달 해석을 수행하였다. 계자손실 해석 결과, 고온초전도 선재를 사용하게 되면 균일한 공극자속밀도가 나타남을 확인하였다. 그리고 가스네온 및 액체네온에 대한 저온 열전달 해석 결과, 고온초전도 선재의 저온 안정성을 유지하기 위해서는 액체네온 1kg/min의 유량의 사용이 적합함을 확인하였다.

Keywords

References

  1. B. Gamble, G. Snitchler and T. MacDonald, "Full Power Test of a 36.5 MW HTS Propulsion Motor," IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp. 1083-1088, June, 2011. DOI: https://doi.org/10.1109/TASC.2010.2093854
  2. T. Yanamoto, M. Izumi, M. Yokoyama and K. Umemoto, "Electric Propulsion Motor Development for Commercial Ships in Japan," Proceedings of the IEEE, vol. 103, no. 12, pp. 2333-2343, December, 2015. DOI: https://doi.org/10.1109/JPROC.2015.2495134
  3. J. P. Voccio, B. B. Gamble, C. B. Prum and H. J. Picard, "125 HP HTS Motor Field Winding Development", IEEE Transactions on Applied Superconductivity, vol. 7, no. 2, pp. 519-522, June, 1997. DOI: https://doi.org/10.1109/77.614555
  4. D. Aized, B. B. Gamble, A. Sidi-Yekhlef, J. P. Voccio, D. I. Driscoll, B. A. Shoykhet and B. X. Zhang, "Status of the 1,000 hp HTS Motor Development", IEEE Transactions on Applied Superconductivity, vol. 9, no. 2, pp. 1197-1200, June, 1999. DOI: https://doi.org/10.1109/77.783514
  5. G. Papst, B. B Gamble, A. J. Rodenbush and R. Schottler, "Development of synchronous motors and generators with HTS field windings", Superconductor Science and Technology, vol. 10, no. 12, pp. 924-926, December, 1997. DOI: https://doi.org/10.1088/0953-2048/10/12/013
  6. G. Nerowski, J. Frauenhofer, G. Ries, W. Nick and H.-W. Neumüller, "Advances and Prospects of HTS Rotating Machine Development at Siemens", IEEE Power Engineering Society General Meeting, Denver, USA, June 6-10, pp. 1-4, 2004. DOI: https://doi.org/10.1109/PES.2004.1373240
  7. M. Frank, J. Frauenhofer, P. van Hasselt, W. Nick, H.-W. Neumuller and G. Nerowski, "Long-Term Operational Experience With First Siemens 400 kW HTS Machine in Diverse Configurations," IEEE Transactions on Applied Superconductivity, vol. 13, no. 2, pp. 2120-2123, June, 2003. DOI: https://doi.org/10.1109/TASC.2003.813013
  8. S. K. Baik, M. H. Sohn, E. Y. Lee, Y. K. Kwon, T. S. Moon, H. J. Park and Y. C. Kim, "Effect of Synchronous Reactance and Power Factor on HTS Synchronous Machine Design and Performance," IEEE Transactions on Applied Superconductivity, vol. 16, no. 2, pp. 1489-1492, June, 2006. DOI: https://doi.org/10.1109/TASC.2005.864460
  9. H. M. Kim, Y. S. Yoon, Y. K. Kwon, Y. C. Kim, S. H. Lee, J. P. Hong, J. B. Song, and H. G. Lee, "Design of Damper to Protect the Field Coil of an HTS Synchronous Motor," IEEE Transactions on Applied Superconductivity, vol. 19, no. 3, pp. 1683-1686, June, 2009. DOI: https://doi.org/10.1109/TASC.2009.2017842
  10. S. K. Baik and G. S. Park, "Load Test Analysis of High-Temperature Superconducting Synchronous Motors," IEEE Transactions on Applied Superconductivity, vol. 26, no. 4, pp. 1683-1686, June, 2009. Art. no. 5206604, June, 2016. DOI: https://doi.org/10.1109/TASC.2016.2530662
  11. R. Sato, B. Felder, M. Miki, K. Tsuzuki, H. Hayakawa and M. Izumi, "Helium-Neon Gas Mixture Thermosyphon Cooling and Stability for Large Scale HTS Synchronous Motors," IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, Art. no. 5200704, June, 2013. DOI: https://doi.org/10.1109/TASC.2013.2241592