DOI QR코드

DOI QR Code

Study on the Numerical Analysis of Crash Impact Test for External Auxiliary Fuel Tank based on ALE

ALE 기반 외부 보조연료탱크 충돌충격시험 수치해석 연구

  • Received : 2017.12.19
  • Accepted : 2018.03.09
  • Published : 2018.03.31

Abstract

A fluid-structure interaction analysis should be performed to evaluate the behavior of the internal fuel and its influence in order to confirm the structural soundness of the fuel tank against external impacts. In the past, fluid-structure interaction analyses have been limited to the obtention of numerical simulation results due to the need for considerable computational resources and excessive computation time. However, recently, computer performance has been dramatically improved, enabling complex numerical analyses such as fluid-structure interaction analysis to be conducted. Lagrangian and Euler coupling methods and Lagrangian based analysis methods are mainly used for fluid-structure interaction analysis. Since both of these methods have their advantages and disadvantages, it is necessary to select the more appropriate one when conducting a numerical analysis. In this study, a numerical analysis of a crash impact test for a fuel tank is performed using ALE. The purpose of the numerical analysis is to estimate the possibility of failure of the fuel tank mounted inside the container when it is subjected to a crash impact. As a result of the numerical analysis, the fluid behavior inside the fuel tank is investigated and the stress generated in the fuel tank and the container structure is calculated, thereby enabling the possibility of fuel tank failure and leakage of the internal fluid to be evaluated.

외부 충격에 대한 연료탱크의 구조 건전성을 확인하기 위해서는 연료탱크 내부 연료의 거동과 그에 따른 영향성을 파악할 수 있는 유체-구조 연성해석을 수행해야 한다. 과거에는 유체-구조 연성해석을 수행하기 위해서는 상당한 전산자원과 과도한 계산시간이 필요하여 수치해석 결과를 도출하기까지 많은 제약이 있었다. 하지만, 최근 컴퓨터 성능이 획기적으로 향상되어 유체-구조 연성해석 등의 복잡한 수치해석이 가능하게 되었다. 유체-구조 연성해석을 위해 주로 사용되는 방법은 ALE(Arbitrary Lagrangian and Eulerian)와 입자법(Smoothed Particle Hydrodynamic)이 있다. 두 방법에는 상호 장단점이 있기 때문에 수치해석의 목적에 따라 적합한 방법을 적용하는 것이 필요하다. 본 연구에서는 ALE을 적용하여 연료탱크 충돌충격 시험 수치모사를 수행하였다. 수치해석 목적은 충돌충격하중에 의해 컨테이너 내부에 장착된 연료탱크의 파손 가능성을 확인하는 것인데, 수치해석의 결과로 연료탱크 내부의 유체 거동을 파악하고, 충격하중에 의해 연료탱크와 컨테이너 구조물에서 발생하는 응력을 계산하여 연료탱크 파손 여부에 따른 내부 유체의 누설 가능성을 제고하였다.

Keywords

References

  1. H.Kim, S. C. Kim, J. Lee, I. Hwang, J. W. Hue, D. W. Shin, P. S. Jun, T. K. Jung, B. K. Ha, "Assessment of crashworthiness performance for fuel tank of rotorcraft", Journal of the Korean Society for Aeronautical and Space Sciences, vol. 38, no. 5, pp. 806-812, 2010. DOI: https://doi.org/10.5139/JKSAS.2010.38.5.477
  2. Ugone, Mary L., "Meling, John E., Snider, Jack D., Gause, Neal J., Carey, Alice F., "Acquisition: Fuel Cells of the V-22 Osprey Joint Advanced Vertical Aircraft", D-2003-013, 2002.
  3. H. Kim, S. C. Kim, S. J. Kim, S. Y. Kim, "Numerical Simulation of Full-scale Crash Impact Test for Fuel Cell of Rotorcraft", Journal of Computational Structural Engineering Institute of Korea, vol. 26, no. 5, pp. 343-349, 2013. DOI: https://doi.org/10.7734/COSEIK.2013.26.5.343
  4. H. Kim, S. C. Kim, "Analysis of Crash Load in Crash Impact Test for Fuel Tank of Rotorcraft", Journal of the Korean Academia-Industrial Cooperation Society, vol. 16, no. 6, pp. 3736-3741, 2015. DOI: https://doi.org/10.5762/KAIS.2015.16.6.3736
  5. H. Kim, S. C. Kim, "Numerical Analysis of Crash Impact Test for External Auxiliary Fuel Tank of Rotorcraft", Journal of the Korean Academia-Industrial Cooperation Society, vol. 18, no. 3, pp. 724-729, 2017. DOI: https://doi.org/10.5762/KAIS.2017.18.3.724
  6. U. S. Army Aviation and Missile Command, "Detail Specification for the Tank, Fuel, Crash-Resistant, Ballistic-Tolerant, Aircraft", MIL-DTL-27422D, 2007.
  7. Ministry of Defence, "Flexible Tanks for Use in Aircraft Fuel and Methanol/water System" Defence Standard 15-2/Issue 1, 1987.