References
- Aoki, T. and Shimamoto, A. (2004), "Active vibration control using cantilever beam of smart matrix composite with embedded shape memory alloy", Key Eng. Mater., 270. Trans Tech Publications.
- Arrigan, J., Pakrashi, V., Basu, B. and Nagarajaiah, S. (2011), "Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers", Struct. Control Health Monit., 18(8), 840-851. https://doi.org/10.1002/stc.404
- Bhargaw, H.N., Ahmed, M. and Sinha, P. (2013), "Thermo-electric behaviour of NiTi shape memory alloy", T. Nonferrous Metals Soc. China , 23(8), 2329-2335. https://doi.org/10.1016/S1003-6326(13)62737-5
- Gupta, K., Sawhney, S., Jain, S.K. and Darpe, A.K. (2003), "Stiffness characteristics of fibre-reinforced composite shaft embedded with shape memory alloy wires", Defence Sci. J., 53(2), 167. https://doi.org/10.14429/dsj.53.2263
- Jovanovic, M.M., Simonovic, A.M., Zoric, N.D., Lukic, N.S., Stupar, S.N. and Ilic, S.S. (2013), "Experimental studies on active vibration control of a smart composite beam using a PID controller", Smart Mater. Struct., 22(11), 115038. https://doi.org/10.1088/0964-1726/22/11/115038
- Khot, S.M., et al. (2012), "Active vibration control of cantilever beam by using PID based output feedback controller", J. Vib. Control, 18(3), 366-372. https://doi.org/10.1177/1077546311406307
- Lee, J.W., Kim, J.K., Han, J.H. and Shin, H.K. (2013), "Active load control for wind turbine blades using trailing edge flap", Wind Struct., 16(3), 263-278. https://doi.org/10.12989/was.2013.16.3.263
- Lim, Y.H.. (2003), "Finite-element simulation of closed loop vibration control of a smart plate under transient loading", Smart Mater. Struct., 12(2), 272. https://doi.org/10.1088/0964-1726/12/2/316
- Lin, Y.J., Lee, T., Choi, B. and Saravanos, D. (1999), "An application of smart-structure technology to rotor blade tip vibration control", J. Vib. Control, 5(4), 639-658. https://doi.org/10.1177/107754639900500408
- Mani, Y. and Senthilkumar, M. (2013), "Smart material (SMA)-based actively tuned dynamic vibration absorber for vibration control in real time applications", J. Eng. Technol., 3(2), 90-96. https://doi.org/10.4103/0976-8580.113045
- Mani, Y. and Senthilkumar, M. (2015), "Shape memory alloy-based adaptive-passive dynamic vibration absorber for vibration control in piping applications", J. Vib. Control, 21(9), 1838-1847. https://doi.org/10.1177/1077546313492183
- Mollasalehi, E., Wood, D.H. and Sun, Q. (2012), "Small wind turbine tower structural vibration", Proceedings of the ASME IMECE, Houston, TX.
- Qiao, Y., Han, J., Zhang, C. and Chen, J. (2012), "Modeling smart structure of wind turbine blade", Appl. Compos. Mater., 19(3-4), 491-498. https://doi.org/10.1007/s10443-011-9210-2
- Qiu, Z. (2015), "Experiments on vibration suppression for a piezoelectric flexible cantilever plate using nonlinear controllers", J. Vib. Control, 21(2), 300-319. https://doi.org/10.1177/1077546313487762
- Quek, S.T., Wang, S.Y. and Ang, K.K. (2003), "Vibration control of composite plates via optimal placement of piezoelectric patches", J. Intel. Mat. Syst. Str., 14(4-5), 229-245.
- Saad, M.S., Jamaluddin, H. and Mat Darus, I.Z. (2015), "Online monitoring and self-tuning control using pole placement method for active vibration control of a flexible beam", J. Vib. Control, 21(3), 449-460. https://doi.org/10.1177/1077546313485105
- Sanusi, K.O., Ayodele, O.L. and Khan, M.T.E. (2014), "A concise review of the applications of NiTi shape-memory alloys in composite materials", South African J. Sci., 110(7-8), 1-5.
- Sellami, T., Berriri, H., Darcherif, A.M., Jelassi, M. and Mimouni, M.F. (2016), "Modal and harmonic analysis of three-dimensional wind turbine models", Wind Eng., 40(6), 518-527. https://doi.org/10.1177/0309524X16671093
- Singh, S.P., Pruthi, H.S. and Agarwal, V.P. (2003), "Efficient modal control strategies for active control of vibrations", J. Sound Vib., 262(3), 563-575. https://doi.org/10.1016/S0022-460X(03)00111-1
- Tushar, C. and Mukesh, S. (2014), "Experimental vibration analysis of piezo-laminated beam", Int. Res. J. Sci. Eng., 2(3), 94-99.
- Xu, S.X. and Koko. T.S. (2004), "Finite element analysis and design of actively controlled piezoelectric smart structures", Finite Elem. Anal. Des., 40(3), 241-262. https://doi.org/10.1016/S0168-874X(02)00225-1
- Yuvaraja, M. and Senthilkumar, M. (2013), "Comparative study on vibration characteristics of a flexible GFRP composite beam using SMA and PZT actuators", Procedia Eng., 64, 571-581. https://doi.org/10.1016/j.proeng.2013.09.132
Cited by
- A distributed parametric model of shape memory alloy-based resonant frequency tunable cantilevered PZT energy harvester with tip mass vol.8, pp.1, 2019, https://doi.org/10.1007/s41683-019-00034-0
- Switching linear quadratic Gaussian control of a flexible blade structure containing magnetorheological fluid vol.42, pp.3, 2018, https://doi.org/10.1177/0142331219878956
- Linear Vibration of the Rotary Plate Under Combined Excitations in Subsonic Airflow vol.12, pp.8, 2020, https://doi.org/10.1142/s175882512050088x
- Analytical model of shape memory alloy embedded smart beam, under actuated condition vol.27, pp.6, 2018, https://doi.org/10.12989/sss.2021.27.6.991