DOI QR코드

DOI QR Code

Analysis of the Component and Immunological Efficacy of Chamaecyparis obtusa Leaf Extract

편백나무 잎 추출물의 성분분석과 면역효능에 관한 연구

  • Kim, Joung Hee (Department of Biomedical Laboratory Science, Daekyeung University) ;
  • Lee, Syng-Ook (Department of Food Science and Technology, Keimyung University) ;
  • Do, Kook Bae (Mediway Korea Co., Ltd.) ;
  • Ji, Won Dae (Mediway Korea Co., Ltd.) ;
  • Kim, Sun Gun (Traditional Korean Medicine Technology Division R&D Department Herbal Medicine Team) ;
  • Back, Young Doo (Department of Clinical Pathology, Daegu Health College) ;
  • Kim, Keuk-Jun (Department of Biomedical Laboratory Science, Daekyeung University)
  • 김정희 (대경대학교 임상병리과) ;
  • 이승욱 (계명대학교 자연과학대학 식품가공학전공) ;
  • 도국배 ((주)메디웨이코리아) ;
  • 지원대 ((주)메디웨이코리아) ;
  • 김선건 (한약진흥재단 천연물 의학팀) ;
  • 백영두 (대구보건대학교 임상병리과) ;
  • 김극준 (대경대학교 임상병리과)
  • Received : 2017.12.07
  • Accepted : 2018.01.23
  • Published : 2018.03.31

Abstract

Chamaecyparis obtusa (CO) has recently been attracting attention because of its beneficial effects on skin allergies, atopic dermatitis, and skin diseases, such as acne and eczema. In the present study, the extract from CO leaf grown in Jangseong gun, Jeollanam-do, Korea was evaluated for its anti-oxidant, anti-inflammatory, and anti-allergic effects in vitro. The total polyphenol content of the CO leaf extract was $25.89{\pm}0.31mg$ gallic acid equivalents (GAE)/g. Gas-chromatography mass-spectrometry (GC-MS) analysis revealed the presence of six compounds in the CO leaf extract: ${\alpha}-terpinene$ (3.03 mg/g), ${\alpha}-terpineol$ (9.48 mg/g), limonene (5.96 mg/g), borneol (59.78 mg/g), myrcene (4.85 mg/g), and sabinene (11.31 mg/g). The $RC_{50}$ values of the CO leaf extract for $H_2O_2$ and ABTS radical were $5.47{\pm}0.13mg/mL$ and $4.00{\pm}0.01mg/mL$, respectively. In addition, the CO leaf extract showed significant inhibitory effects on lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells and IgE-induced release of ${\beta}-hexosaminidase$ (degranulation) in mast-cell like RBL-2H3 cells. The cell viability assay showed that the CO leaf extract ($100{\sim}800{\mu}g/mL$) did not affect the viability of human normal skin fibroblast CCD-986sk cells significantly. Overall, these results suggest that the CO leaf extract is a potential functional cosmetic ingredient that can exert anti-oxidant, anti-inflammatory, and anti-allergic effects.

본 연구는 전라도 장성지역의 편백나무 잎 추출물을 사용하여 in vitro에서 항염증 및 항알레르기 효과를 보고자 연구를 진행하였다. 편백나무 잎 추출물은 $50^{\circ}C$에서 감압 건조하여 실험에 사용하였으며, 총 폴리페놀 함량을 측정한 결과 $25.89{\pm}0.31mg\;GAE/g$로 나타났다. 설정된 GC-MS 분석법으로 편백나무잎 추출물의 6종 성분에 대한 함량 분석을 실시한 결과, ${\alpha}-Terpinene$ 3.03 mg/g, ${\alpha}-Terpineol$ 9.48 mg/g, limonene 5.96 mg/g, borneol 59.78 mg/g, myrcene 4.85 mg/g, sabinene 11.31 mg/g로 borneol이 가장 많은 것으로 나타났다. 편백나무 잎 추출물의 항산화 활성을 측정한 결과, $H_2O_2$$ABTS^+$ 라디칼에 대한 추출물의 $RC_{50}$이 각각 $5.47{\pm}0.13mg/mL$$4.00{\pm}0.01mg/mL$로 나타났다. 또한 마우스 유래의 대식세포주인 RAW 264.7 세포에서 LPS 100 ng/mL을 처리를 통한 염증유도 군에서 주요 인자인 NO 생성이 $28{\pm}0.38{\mu}M$까지 증가하였으나 편백나무 잎 추출물 $150{\mu}g/mL$ 처리 농도에서 $IC_{50}$ 으로 감소할 것으로 추정되므로, 편백나무 잎 추출물이 항염증 작용이 있음을 시사한다. 알레르기 주요 인자인 ${\beta}-hexosaminidase$의 경우 처리한 편백나무 잎 추출물의 농도 의존적으로 감소되어 항알레르기 효능이 있음을 알 수 있었으며, 인간 유래 섬유아세포인 CCD-986sk 세포에 대해 편백나무 잎 추출물의 농도 $100{\sim}800{\mu}g/mL$ 범위에서 세포독성을 전혀 보이지 않았다. 따라서 편백나무 잎 추출물이 향후 기능성 화장품, 연고 등의 산업화에 광범위하게 이용될 수 있을 것으로 사료된다.

Keywords

References

  1. Yang JK, Choi MS, Seo WT, Rinker DL, Han SW, Cheong GW. Chemical composition and antimicrobial activity of Chamaecyparis obtuse leaf essential oil. Fitoterapia. 2007;78(2):149-152. https://doi.org/10.1016/j.fitote.2006.09.026
  2. Lee JH, Lee BK, Kim JH, Lee SH, Hong SK. Comparison of chemical compositions and antimicrobial activities of essential oils from three conifer trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa. J Microbiol Biotechnol. 2009;19(4):391-396. https://doi.org/10.4014/jmb.0803.191
  3. Jang YS, Lee CH, Kim MK, Kim JH, Lee SH, Lee HS. Acaricidal activity of active constituent isolated in Chamaecyparis obtusa leaves against Dermatophagoides spp. J Agric Food Chem. 2005;53(6):1934-1937. https://doi.org/10.1021/jf048472a
  4. An BS, Kang JH, Yang H, Jung EM, Kang HS, Choi IG, et al. Anti-inflammatory effects of essential oils from Chamaecyparis obtusa via the cyclooxygenase-2 pathway in rats. Molecular medicine reports. 2013;8(1):255-259. https://doi.org/10.3892/mmr.2013.1459
  5. Jeong EJ, Hwang L, Lee M, Lee KY, Ahn MJ, Sung SH. Neuroprotective biflavonoids of Chamaecyparis obtusa leaves against glutamate-induced oxidative stress in HT22 hippocampal cells. Food Chem Toxicol. 2014;64:397-402. https://doi.org/10.1016/j.fct.2013.12.003
  6. Park HJ, Kim SK, Kang WS, Woo JM, Kim JW. Effects of essential oil from Chamaecyparis obtusa on cytokine genes in the hippocampus of maternal separation rats. Can J Physiol Pharmacol. 2013;92(2):95-101. https://doi.org/10.1139/cjpp-2013-0224
  7. Tang B, Lee YJ, Lee YR, Row KH. Examination of 1-methylimidazole series ionic liquids in the extraction of flavonoids from Chamaecyparis obtuse leaves using a response surface methodology. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;933(15):8-41. https://doi.org/10.1016/j.jchromb.2013.06.023
  8. Inaba H, Nagaoka Y, Kushima Y, Kumagai A, Matsumoto Y, Sakaguchi M, et al. Comparative examination of anti-proliferative activities of (-)-epigallocatechin gallate and (--)-epigallocatechin against HCT116 colorectal carcinoma cells. Biol Pharm Bull. 2008;31(1):79-84. https://doi.org/10.1248/bpb.31.79
  9. Bose B, Choudhury H, Tandon P, Kumaria S. Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin-aging related enzyme inhibitory activities of Malaxis acuminata, a threatened orchid of nutraceutical importance. J Photochem Photobiol B. 2017;173(10):686-695.
  10. Haratake A, Uchida Y, Schmuth M, Tanno O, Yasuda R, Epstein JH, et al. UVB-induced alterations in permeability barrier function: roles for epidermal hyperproliferation and thymocytemediated response. J Invest Dermatol. 1997;108(5): 769-775. https://doi.org/10.1111/1523-1747.ep12292163
  11. Kim MY, Cho DO, Back OH, Lee BH. Effects of body composition, nutrient intakes and biochemical indices on skin health status of female university students with sensitive skin. Korean J Food Culture. 2008;23(2):258-267.
  12. Yang YM, Kang SM. The effects of the application of ceramide emulsion on the improvement of skin makeup in sensitive skin women in their 20's. J Kor Soc Cosm. 2013; 19(5):891-901.
  13. Imokawa G, Abe A, Jin K, Higaki A. Decreased level of ceramides in straum corneum dr atopic dermatitis: an etologic facter on atopic dry skin. J Invest Dermtol. 1991;96(4):523-526. https://doi.org/10.1111/1523-1747.ep12470233
  14. Chen YJ, Lin CY, Cheng SS, Chang ST. Phylogenetic relationships of the genus Chamaecyparis inferred from leaf essential oil. Chem Biodivers. 2011;8(6):1083-1097. https://doi.org/10.1002/cbdv.201000348
  15. Singleton VL. Naturally occurring food toxicants: phenolic substances of plant origin common in foods. Advances Food Res. 1981;27(21):149-242.
  16. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  17. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in ullung island. Korean J Food Sci Technol. 2005;37(2):233-240.
  18. Green LC, Wagner DA, Glogowski J. Analysis of nitrate, nitrite, and [$15^{N}$]nitrate in biological fluids. Anal Biochem. 1982;126(1):131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  19. Lee SE, Joung HG, Lee DY, Lee JH, Choi J, Kim GS, et al. Inhibition activity of plants on IgE-mediated degranulation of RBL-2H3 cells. Korean J Plant Resources. 2015;28(12):718-726. https://doi.org/10.7732/kjpr.2015.28.6.718
  20. Lee DS, Lim MS, Kwan SS, Kim SY, Park SN. Antioxidative activity and componential analysis of Chamaecyparis obtusa leaf extract. App Chem Eng. 2012;23(1):93-99.
  21. Kodikonda M, Prakash RN. Ameliorative effect of borneol, a natural bicyclic monoterpene against hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic Wistar rats. Biomed Pharmacother. 2017;96:336-347. https://doi.org/10.1016/j.biopha.2017.09.122
  22. Ahn JY, Lee SS, Kang HY. Biological activities of essential oil from Chamaecyparis obtusa. J Soc Cosmet Scientists Korea. 2004; 30(4):503-507.
  23. Kim SK, Lee SM, Lim HB. Attenuation effect of Chamaecyparis obtusa leaf essential oils on airway hyperresponsiveness and airway inflammation in ovalbumin-Induced murine asthma model. J Medicinal Crop Science. 2015;23(3):237-244. https://doi.org/10.7783/KJMCS.2015.23.3.237
  24. Kang S, Lee JS, Lee HC, Petriello MC, Kim BY, Do JT, et al. Phytoncide extracted from pinecone decreases LPS-Induced inflammatory responses in bovine mammary epithelial cells. J Microbiol Biotechnol. 2016;26(3):579-587. https://doi.org/10.4014/jmb.1510.10070

Cited by

  1. 편백나무 잎 추출물로 염색한 모직물의 염색성 및 기능성 vol.43, pp.2, 2018, https://doi.org/10.5850/jksct.2019.43.2.288
  2. 편백의 다신초 유도 및 발근을 통한 식물체 재분화 vol.46, pp.4, 2019, https://doi.org/10.5010/jpb.2019.46.4.303
  3. 편백나무(Chamaecyparis obtusa) 추출물의 항산화, 미백효과에 관한 연구 vol.37, pp.6, 2020, https://doi.org/10.12925/jkocs.2020.37.6.1496