DOI QR코드

DOI QR Code

Performance Evaluation of In Vitro Diagnostic Reagents for Mycobacterium tuberculosis and Non-tuberculous Mycobacteria by FDA Approval

미국 FDA 허가사례를 통해 본 결핵균 및 비결핵 항산균 체외진단용 시약의 성능평가

  • Kim, Yeun (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Park, Sunyoung (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Kim, Jungho (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Chang, Yunhee (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Ha, Sunmok (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Choi, Yeonim (Department of Biomedical Laboratory Science, Songho College) ;
  • Lee, Hyeyoung (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University)
  • 김연 (연세대학교 보건과학대학 임상병리학과) ;
  • 박선영 (연세대학교 보건과학대학 임상병리학과) ;
  • 김정호 (연세대학교 보건과학대학 임상병리학과) ;
  • 장연희 (연세대학교 보건과학대학 임상병리학과) ;
  • 하선목 (연세대학교 보건과학대학 임상병리학과) ;
  • 최연임 (송호대학교 임상병리과) ;
  • 이혜영 (연세대학교 보건과학대학 임상병리학과)
  • Received : 2017.12.05
  • Accepted : 2017.12.27
  • Published : 2018.03.31

Abstract

Tuberculosis (TB) is a bacterial infection disease caused by members of the species Mycobacterium tuberculosis (MTB) complex. Approximately one third of the world's population is infected with TB. In Korea, approximately 40,000 new patients are identified each year. Moreover, infections from non-tuberculous mycobacteria (NTM) have also increased. In the diagnosis of TB and NTM, traditional bacterial cultures are required for 3 to 4 weeks. Therefore, rapid and accurate diagnostic tests for TB and NTM are needed. To distinguish between TB and NTM, a range of diagnostic methods have been developed worldwide. In vitro diagnostic assays are constantly being developed to meet the increasing need for the rapid and accurate identification for TB and NTM. On the other hand, the performance evaluations of in vitro diagnostic reagents for TB and NTM are lacking. Recently, the Korea Food and Drug Administration (KFDA) issued a guideline for in vitro diagnostic reagents for MTB and NTM. Here, this study analyzed the performance of currently developed in vitro diagnostic reagents for TB and NTM in the US FDA. This analysis of US FDA approved molecular assays could serve as a useful reference for an evaluation of the reagent performance of TB and NTM.

결핵(TB)은 Mycobacterium tuberculosis (MTB) 복합체의 구성원에 의한 세균 감염 질병이다. 결핵은 전 세계 인구의 1/3이 감염된 것으로 알려져 있으며, 한국에서는 매년 약 4만 명의 새로운 결핵환자가 발생한다. 또한, 비결핵 항상균 감염이 증가하고 있는 추세이다. 전통적인 결핵 및 비결핵 항상균 진단방법은 세균 배양으로 3~4주 이상이 소요된다. 따라서, 신속하고 정확한 결핵균(TB) 및 비결핵 항상균(NTM) 진단법의 필요성이 요구되고 있다. 결핵균 및 비결핵 항상균을 구분하기 위하여, 전 세계적으로 다양한 진단 방법이 개발되고 있다. 특히, 결핵균과 비결핵 항상균을 신속하고 정확한 동정의 요구가 증가함에 따라, 정확하고 신속하게 진단하기 위한 체외 진단 방법이 개발 되고 있다. 그러나 현재 결핵과 비결핵 항상균에 대한 체외 진단 시약의 성능 평가는 부족한 실정이다. 최근 식약청은 결핵균 및 비결핵 항상균 체외 진단 시약에 대한 가이드 라인을 발표했다. 본 연구에서는, 미국 FDA에 승인을 받은 결핵균 및 비결핵 항산균에 대한 체외 진단 시약의 성능을 검토하였다. 이 검토는 결핵균 및 비결핵 항상균 체외 진단 시약 평가에 유용한 참고 자료가 될것으로 사료된다.

Keywords

References

  1. WHO. Global tuberculosis report 2017. Report. Geneva: WHO institute; 2017 October.
  2. Prevots DR, Loddenkemper R, Sotgiu G, Migliori GB. Nontuberculous mycobacterial pulmonary disease: an increasing burden with substantial costs. Eur Respir J. 2017;49(4) pii: 1700374. doi: 10.1183/1399300 3.00374-2017.
  3. Food and Drug Administration. Microbiology device, reclassification of nucleic acid-based systems for Mycobacterium tuberculosis complex. Report. Washington: Department of Health and Human Service; 2013 Jan.
  4. Food and Drug Administration. Microbiology device. Class II special controls guideline: nucleic acid-based in vitro diagnostic devices for the detection of Mycobacterium tuberculosis complex in respiratory specimens. Report. Washington: Department of Health and Human Service; 2014 May.
  5. Food and Drug Administration. Department of Health and Human service. Microbiology Device. Class II special controls guideline: nucleic acid-based in vitro diagnostic devices for the detection of Mycobacterium tuberculosis complex and genetic mutations associated with Mycobacterium tuberculosis complex antibiotic resistance in respiratory specimens. Report. Washington: Department of Health and Human Service; 2014 October.
  6. Food and Drug Administration. Non-tuberculous Mycobacterial lung infection public meeting. The voice of the patient. Report. Washington: Department of Health and Human Service; 2016 May.
  7. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367-416. https://doi.org/10.1164/rccm.200604-571ST
  8. Joint committee for the revision of Korean guidelines for Tuberculosis Korea centers for disease control and Prevention. Korean guidelines for Tuberculosis 2nd edition. 2014. p1-270.
  9. Target amplification test for the direct detection of Mycobacterium tuberculosis. Summary of safety and effectiveness data. San Diego. GEN-Probe; 1999 September.
  10. Kimber Richter. Premarket approval of Roche molecular systems $AMPLICOR^{(R)}$ Mycobacterium Tuberculosis test. Food and Drug Administration; 1996 September.
  11. Food and Drug Administration. 510(k). K131706. Report. Washington: Department of Health and Human Service; 2013 December.
  12. Huang H, Zhang Y, Li S, Wang J, Chen J, Pan Z, et. al. Rifampicin resistance and multidrug-resistant Tuberculosis detection using Xpert MTB/RIF in Wuhan, China: a retrospective study. Microb Drug Resist. 2017 Oct 20. doi:10.1089/mdr.2017.0114. [Epub ahead of print].
  13. Sanne CVK, Aigul T, Aliya K, Zauresh M, Lyazzat B, Moldir A, et al. Effect of introducing Xpert MTB/RIF to test and treat Individuals at risk of multidrug- resistant Tuberculosis in Kazakhstan: A prospective cohort study. PLos one. 2015;10(8):e0136368. https://doi.org/10.1371/journal.pone.0136368
  14. Geleta DA, Megerssa YC, Gudeta AN, Akalu GT, Debele MT, Tulu KD. Xpert MTB/RIF assay for diagnosis of pulmonary tuberculosis in sputum specimens in remote health care facility. BMC Microbiol. 2015;15:220. https://doi.org/10.1186/s12866-015-0566-6
  15. Detjen AK, DiNardo AR, Leyden J, Steingart KR, Menzies D, Schiller I, et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis. Lancet Respir Med. 2015;3(6):451-461. https://doi.org/10.1016/S2213-2600(15)00095-8
  16. Antonenka U, Hofmann-Thiel S, Turaev L, Esenalieva A, Abdulloeva M, Sahalchyk E, et al. Comparison of Xpert MTB/RIF with ProbeTec ET DTB and COBAS TaqMan MTB for direct detection of M. tuberculosis complex in respiratory specimens. BMC Infect Dis. 2013;20(13):280.
  17. Chen X, Yang Q, Kong H, Chen Y. Real-time PCR and amplified $MTD^{(R)}$ for rapid detection of Mycobacterium tuberculosis in pulmonary specimens. Int J Tuberc Lung Dis. 2012;16(2):235-239. https://doi.org/10.5588/ijtld.11.0212
  18. Papaventsis D, Ioannidis P, Karabela S, Nikolaou S, Syridou G, Marinou I, et al. Impact of the Gen-Probe Amplified $MTD^{(R)}$ Test on tuberculosis diagnosis in children. Int J Tuberc Lung Dis. 2012;16(3):384-390. https://doi.org/10.5588/ijtld.11.0276
  19. Guerra RL, Hooper NM, Baker JF, Alborz R, Armstrong DT, Maltas G, et al. Use of the amplified Mycobacterium tuberculosis direct test in a public health laboratory: test performance and impact on clinical care. Chest. 2007;132(3):946-951. https://doi.org/10.1378/chest.06-2959
  20. David WD, Amelia M, Nicole P, Christopher B, Susan ED. Cost-effectiveness analysis of the Gen-Probe amplified Mycobacterium tuberculosis direct test as used routinely on smear-positive respiratory specimens. J Clin Microbiol 2003;41(3):948-953. https://doi.org/10.1128/JCM.41.3.948-953.2003
  21. Fegou E, Jelastopulu E, Sevdali M, Anastassiou ED, Dimitracopoulos G, Spiliopoulou I. Sensitivity of the Cobas Amplicor system for detection of Mycobacterium tuberculosis in respiratory and extrapulmonary specimens. Clin Microbiol Infect. 2005;11(7):593-596. https://doi.org/10.1111/j.1469-0691.2005.01185.x
  22. Mitarai S, Kurashima A, Tamura A, Nagai H, Shishido H. Clinical evaluation of Amplicor Mycobacterium detection system for the diagnosis of pulmonary mycobacterial infection using sputum. Tuberculosis. 2001;81(5):319-325. https://doi.org/10.1054/tube.2001.0305
  23. Choi WS, Choo SK. Effectiveness of clinical examination for detection of respiratory tuberculosis. Korean J Clin Lab Sci. 2006;38(1):54-58.
  24. Cho WH, Won EJ, Choi HJ, Kee SJ, Shin JH, Ryang DW, et al. Comparison of AdvanSure TB/NTM PCR and COBAS TaqMan MTB PCR for detection of Mycobacterium tuberculosis complex in routine clinical practice. Ann Lab Med. 2015;35(3):356-361. https://doi.org/10.3343/alm.2015.35.3.356
  25. Huh HJ, Kwon HJ, Ki CS, Lee NY. Comparison of the genedia MTB detection kit and the cobas TaqMan MTB assay for detection of Mycobacterium tuberculosis in respiratory specimens. J Clin Microbiol. 2015;53(3):1012-1014. https://doi.org/10.1128/JCM.03163-14
  26. Lee MR, Chung KP, Wang HC, Lin CB, Yu CJ, Lee JJ, et al. Evaluation of the Cobas TaqMan MTB real-time PCR assay for direct detection of Mycobacterium tuberculosis in respiratory specimens. J Med Microbiol. 2013;62(8):1160-1164. https://doi.org/10.1099/jmm.0.052043-0
  27. Moon JW, Chang YS, Kim SK, Kim YS, Lee HM, Kim SK, et al. The clinical utility of polymerase chain reaction for the diagnosis of pleural tuberculosis. Clin Infect Dis. 2005;41(5):660-666. https://doi.org/10.1086/432474
  28. Lim TK, Mukhopadhyay A, Gough A, Khoo KL, Khoo SM, Lee KH, et al. Role of clinical judgment in the application of a nucleic acid amplification test for the rapid diagnosis of pulmonary tuberculosis. Chest. 2003;124(3):902-908. https://doi.org/10.1378/chest.124.3.902
  29. Tran AC, Halse TA, Escuyer VE, Musser KA. Detection of Mycobacterium avium complex DNA directly in clinical respiratory specimens: opportunities for improved turn-around time and cost savings. Diagn Microbiol Infect Dis. 2014;79(1):43-78. https://doi.org/10.1016/j.diagmicrobio.2014.01.019
  30. Louro AP, Waites KB, Georgescu E, Benjamin WH Jr. Direct identification of Mycobacterium avium complex and Mycobacterium gordonae from MB/BacT bottles using AccuProbe. J Clin Microbiol. 2001;39(2):570-573. https://doi.org/10.1128/JCM.39.2.570-573.2001
  31. Lebrun L, Espinasse F, Poveda JD, Vincent-Levy-Frebault V. Evaluation of nonradioactive DNA probes for identification of mycobacteria. J Clin Microbiol. 1992;30(9):2476-2478. https://doi.org/10.1128/JCM.30.9.2476-2478.1992
  32. Makinen J, Marjamaki M, Marttila H, Soini H. Evaluation of a novel strip test, GenoType Mycobacterium CM/AS, for species identification of mycobacterial cultures. Clin Microbiol Infect. 2006;12(5):481-483. https://doi.org/10.1111/j.1469-0691.2006.01380.x
  33. Richter E, Rusch-Gerdes S, Hillemann D. Evaluation of the GenoType Mycobacterium assay for identification of mycobacterial species from cultures. J Clin Microbiol. 2006;44(5):1769-1775. https://doi.org/10.1128/JCM.44.5.1769-1775.2006
  34. Lee AS, Jelfs P, Sintchenko V, Gilbert GL. Identification of non-tuberculous mycobacteria: utility of the GenoType Mycobacterium CM/AS assay compared with HPLC and 16S rRNA gene sequencing. J Med Microbiol. 2009;58(7):900-904. https://doi.org/10.1099/jmm.0.007484-0
  35. Singh AK, Maurya AK, Umrao J, Kant S, Kushwaha RA, Nag VL, et al. Role of $GenoType^{(R)}$ common Mycobacteria/Additional Species Assay for Rapid Differentiation Between Mycobacterium tuberculosis Complex and Different Species of Non-Tuberculous Mycobacteria. J Lab Physicians. 2013;5(2):83-89. https://doi.org/10.4103/0974-2727.119847
  36. Garcia-Agudo L, Jesus I, Rodriguez-Iglesias M, Garcia-Martos P. Evaluation of INNO-LiPA mycobacteria v2 assay for identification of rapidly growing mycobacteria. Braz J Microbiol. 2011;42(3):1220-1226. https://doi.org/10.1590/S1517-83822011000300048
  37. Padilla E, Gonzalez V, Manterola JM, Perez A, Quesada MD, Gordillo S, et al. Comparative evaluation of the new version of the INNO-LiPA Mycobacteria and genotype Mycobacterium assays for identification of Mycobacterium species from MB/BacT liquid cultures artificially inoculated with Mycobacterial strains. J Clin Microbiol. 2004;42(7):3083-8088. https://doi.org/10.1128/JCM.42.7.3083-3088.2004
  38. Trueba F, Fabre M, Saint-Blancard P. Rapid identification of Mycobacterium genavense with a new commercially available molecular test, INNO-LiPA Mycobacteria v2. J Clin Microbiol. 2004;42(9):4403-4404. https://doi.org/10.1128/JCM.42.9.4403-4404.2004
  39. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA. 2002;99(6):3684-3689. https://doi.org/10.1073/pnas.052548299
  40. Ueyama M, Chikamatsu K, Aono A, Murase Y, Kuse N, Morimoto K, et al. Sub-speciation of Mycobacterium tuberculosis complex from tuberculosis patients in Japan. Tuberculosis (Edinb). 2014;94(1):15-19. https://doi.org/10.1016/j.tube.2013.09.006