DOI QR코드

DOI QR Code

다양한 원료에 따른 발전용 바이오중유의 윤활 특성 연구

Study on the Lubricity Characteristics of Bio-heavy Oil for Power Generation by Various feedstocks

  • 김재곤 (한국석유관리원 석유기술연구소) ;
  • 장은정 (한국석유관리원 석유기술연구소) ;
  • 전철환 (한국석유관리원 석유기술연구소) ;
  • 황인하 (한국석유관리원 석유기술연구소) ;
  • 나병기 (충북대학교 화학공학과)
  • Kim, Jae-Kon (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Jang, Eun-Jung (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Jeon, Cheol-Hwan (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Hwang, In-Ha (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University)
  • 투고 : 2018.11.19
  • 심사 : 2018.11.17
  • 발행 : 2018.12.31

초록

바이오중유란 다양한 동 식물성 유지, 지방산 메틸에스테르, 지방산 에틸에스테르 및 그 부산물을 혼합하여 제조된 제품이며, 국내 기력 중유발전기의 연료(B-C)로 사용되고 있다. 그러나 이러한 바이오중유의 원료 조성 때문에 발전기의 보일러로 이송되는 연료펌프, 유량펌프, 인젝터 등의 연료 공급시스템에서 마찰마모를 유발할 경우 심각한 피해를 초래 할 수 있다. 따라서, 본 연구에서는 발전용 바이오중유의 다양한 원료들의 연료특성과 이에 따른 윤활성을 평가하고, 발전기의 마찰마모 저감을 위한 발전용 바이오중유의 연료 구성 방안을 제시하였다. 발전용 바이오중유 원료물질의 윤활성(HFRR)은 평균 $137{\mu}m$이며, 원료물질에 따라 차이가 있으나 $60{\mu}m{\sim}214{\mu}m$ 분포를 보이고 있다. 이 중 윤활성이 좋은 순서는 Oleo pitch > BD pitch > CNSL > Animal fat > RBDPO > PAO > Dark oil > Food waste oil이다. 발전용 바이오중유의 원료 물질 3종으로 구성된 바이오중유 평가시료 5종에 대한 윤활성은 평균 $151{\mu}m$이며, $101{\mu}m{\sim}185{\mu}m$ 분포를 보이고 있다. 이 중 윤활성이 좋은 순서는 Fuel 1 > Fuel 3 > Fuel 4 > Fuel 2 > Fuel 5이다. 바이오중유 평가시료(평균 $151{\mu}m$)는 C중유($128{\mu}m$) 대비 낮은 윤활성을 나타내었다. 이는 발전용 바이오중유가 지방산 물질로 구성되어 있어 C중유보다 파라핀, 방향족 성분 함량이 낮아 점도가 낮고, 산가가 높기 때문에 산성 성분에 의한 윤활막 형성 저해에 따른 것으로 판단된다. 따라서, 적정 수준의 마찰마모 저감을 위해 윤활성을 증가 시킬 수 있는 바이오중유의 원료로서 Oleo pitch, BD pitch를 60% 이상 함유할 경우 연료 제조 시 윤활성 증가가 예상된다.

Bio-heavy oil for power generation is a product made by mixing animal fat, vegetable oil and fatty acid methyl ester or its residues and is being used as steam heavy fuel(B-C) for power generation in Korea. However, if the fuel supply system of the fuel pump, the flow pump, the injector, etc., which is transferred to the boiler of the generator due to the composition of the raw material of the bio-heavy oi, causes abrasive wear, it can cause serious damage. Therefore, this study evaluates the fuel characteristics and lubricity properties of various raw materials of bio-heavy oil for power generation, and suggests fuel composition of biofuel for power generation to reduce frictional wear of generator. The average value of lubricity (HFRR abrasion) for bio-heavy oil feedstocks for power generation is $137{\mu}m$, and it varies from $60{\mu}m$ to $214{\mu}m$ depending on the raw materials. The order of lubricity is Oleo pitch> BD pitch> CNSL> Animal fat> RBDPO> PAO> Dark oil> Food waste oil. The average lubricity for the five bio-heavy oil samples is $151{\mu}m$ and the distribution is $101{\mu}m$ to $185{\mu}m$. The order of lubricity is Fuel 1> Fuel 3> Fuel 4> Fuel 2> Fuel 5. Bio-heavy oil samples (average $151{\mu}m$) show lower lubricity than heavy oil C ($128{\mu}m$). It is believed that bio-heavy oil for power generation is composed of fatty acid material, which is lower in paraffin and aromatics content than heavy oil(B-C) and has a low viscosity and high acid value, resulting in inhibition of the formation of lubricating film by acidic component. Therefore, in order to reduce friction and abrasion, it is expected to increase the lubrication of fuel when it contains more than 60% Oleo pitch and BD pitch as raw materials of bio-heavy oil for power generation.

키워드

HGOHBI_2018_v35n4_985_f0001.png 이미지

Fig. 1. Example of general component chemical structures of bio-heavy oil for power generation.

HGOHBI_2018_v35n4_985_f0002.png 이미지

Fig. 2. High frequency reciprocating rig(HFRR) instrument and microscope

HGOHBI_2018_v35n4_985_f0003.png 이미지

Fig. 3. Lubricity image of feedstocks in biofuel for power generation.

HGOHBI_2018_v35n4_985_f0004.png 이미지

Fig. 4. Lubricity comparison of feedstocks in bio-heavy oil for power generation.

HGOHBI_2018_v35n4_985_f0005.png 이미지

Fig. 5. Lubricity image of bio-heavy oil for power generation.

HGOHBI_2018_v35n4_985_f0006.png 이미지

Fig. 6. Lubricity comparison of feedstocks in bio-heavy oil for power generation.

Table 1. Feedstocks of bio-heavy oil for power generation[11]

HGOHBI_2018_v35n4_985_t0001.png 이미지

Table 2. Test sample of feedstocks in bio-heavy oil for power generation

HGOHBI_2018_v35n4_985_t0002.png 이미지

Table 3. Test sample of bio-heavy oil for power generation

HGOHBI_2018_v35n4_985_t0003.png 이미지

Table 4. The quality standard and test method

HGOHBI_2018_v35n4_985_t0004.png 이미지

Table 5. The physicochemical characteristics of feedstock materials in bio-heavy oil for power generation

HGOHBI_2018_v35n4_985_t0005.png 이미지

Table 6. The physicochemical characteristics of bio-heavy oil for power generation

HGOHBI_2018_v35n4_985_t0006.png 이미지

Table 7. Determination of lubricity of feedstocks in bio-heavy oil for power generation

HGOHBI_2018_v35n4_985_t0007.png 이미지

Table 8. Determination of lubricity of bio-heavy oil for power generation

HGOHBI_2018_v35n4_985_t0008.png 이미지

참고문헌

  1. IEA, World Energy Outlook, International Energy Agency, (2017).
  2. J. -K. Kim, E. S, Yim, C. S. Jung, "Study on comparison of global biofuels mandates policy in transport sector", New & Renewable Energy, Vol.7, pp. 18-29, (2011).
  3. C. Felix, M. Emily, M. Jan, E. Ottmar, "Climate policy for road transport revised(I) : evaluation of the current frame work", Energy policy, Vol.39, pp. 2396-2406, (2011). https://doi.org/10.1016/j.enpol.2011.01.062
  4. R. E. H. Sims, W. Mabee, K. N. Saddler, M. Raylor, "An overview of second generation biofuel technologies", Bioresour. Technol, Vol.101, pp. 1570-1580, (2010). https://doi.org/10.1016/j.biortech.2009.11.046
  5. S. N. Naik, V. V. Goud, P, K. Rout, A. K Dalai, "Production of first and second generation biofuels : A comprehensive review", Renewable and Sustainable Energy Reviews, Vol.14, pp. 578-597, (2010). https://doi.org/10.1016/j.rser.2009.10.003
  6. Notification on the pilot dissemination projects of biofuel for power generation, Notification No. 2016-226 of the Ministry of Trade, Industry & Energy.
  7. J. H. Ha, "Demonstration project of bio-fuel oil in power plant-Current Status and problem", K-Petro Magazine, Vol.112, pp. 80-83, (2014).
  8. https://www.hawaiianelectric.com/cleanenergy-hawaii/clean-energy-facts/renewable-energy-sources/biofuels (accessed on 15 November 2018).
  9. E. J. Jang, J. Y. Park, K. I. Min, E. S. Yim, J. H. Ha, B. H. Lee, A Study on the Quality Characteristics of Power Bio-Fuel Oil for Alternative Fuel oil, J. of Korean Oil Chemists' Soc. Vol.31, No.4, pp. 564-569, (2014).
  10. J.-H. Ha, C.-H. Jeon, Y.-C. Kwon, "A Study on the Emission Characteristics for Blended Power Bio-Fuel Oil", ", Trans. of the Korean Hydrogen and New Energy Society, Vol.26, No.5, pp. 484-492, (2015). https://doi.org/10.7316/KHNES.2015.26.5.484
  11. E. J. Jang, M. E. Lee, J. Y. Park, K. I. Min, E. S Yim, J. H. Ha, B. H. Lee, "A Study on the Quality Characteristics of feedstocks for Power Bio-Fuel Oil", J. of Korean Oil Chemists' Soc. Vo.32, No.1, pp. 137-147, (2015).
  12. B. B. Ivana, J. S. Ivan, S. S. Olivera, B. Veljkovic, Y. Hung, "Waste animal fats as feedstocks for biodiesel production", Renew. Sustain. Energy Rev. Vo1.32, 238-254, (2014). https://doi.org/10.1016/j.rser.2014.01.038
  13. A. Ertan, C. Mustafa, S. Huseyin, "Biodiesel production from vegetable oil and waste animal fats in a pilot plant", Waste Management. Vol.34, pp. 2146-2154, (2014). https://doi.org/10.1016/j.wasman.2014.07.019
  14. S. Mekhilef, S. Siga, R. Saidur, "A review on palm oil biodiesel as a sourece of renewable fuel", Renew. Sustain. Energy Rev, Vol.15, pp. 1937-1949, (2011). https://doi.org/10.1016/j.rser.2010.12.012
  15. J.-K. Kim, J.-Y. Park, "Fuel properties of various biodiesel derived vegetable oil", J. of Korean Oil Chemists' Soc. Vol.30, pp. 45-48, (2013).
  16. A. Z. Syahir, N. W. M. Zulkifli, H. H. Masjuki, M. A. Kalam, A. Alabdulkarem, M. Gulzar, L. S. Khuong, M. H. Harith, "A review on bio-based lubricants and their applications", J. Clean. Prod, Vol.168, pp. 997-1016, (2017). https://doi.org/10.1016/j.jclepro.2017.09.106
  17. S. Jain, M. P. Sharma, "Stability of biodiesel and its blends: a review", Renew Sustain Energy Rev, Vol.14, pp. 667-678, (2010). https://doi.org/10.1016/j.rser.2009.10.011
  18. Z. Yaakob, Z, B. N. Narayanan, S. Padikkaparamil, K. S. Unnu, P. M. Akbar P, "A review on the oxidation stability of biodiesel", Renew Sustain. Energy Rev, Vol.35, pp.136-153, (2014). https://doi.org/10.1016/j.rser.2014.03.055
  19. G. Knothe, "Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters", Fuel Process Technol, Vol.86, pp.1059-70, (2005). https://doi.org/10.1016/j.fuproc.2004.11.002
  20. H. Fang, R. L. McCormick, "Spectroscopic study of biodiesel degradation pathways", SAE Technical Paper No. 2006-01-3300, (2006).
  21. M. H. Mosarof, M. A. Kalam, H. H. Masjuki, A. Arslan, I. M. Monirul, A. M. Ruhul, S. A. Shahir and L. S. Khuong, "Analysis of thermal stability and lubrication characteristics of Millettia pinnata oil", RSC Adv, Vol.6, pp. 81414-81425, (2016). https://doi.org/10.1039/C6RA13257J
  22. H. A. Abdulbari, M. Y. Rosli, H. N. Abdurrahman, M. K. Nizam, M, "Lubricating grease from spent bleaching earth and waste cooking oil: tribology properties", Int. J. Phys. Sci, Vol.6, pp. 4695-4699, (2011).
  23. A. Adhvaryu, S. Z. Erhan, J. M. Pere, "Tribological studies of thermally and chemically modified vegetable oils for use as environmentally friendly lubricants", Wear, Vol.257, pp. 359-367, (2004). https://doi.org/10.1016/j.wear.2004.01.005
  24. B. Bongfa, A. A. Peter, A. Barnaba, M. O. Adeotic, "Comparison of lubricant properties of castor oil and commercial engine oil", J. Tribol. 5, 1-10, (2015).