DOI QR코드

DOI QR Code

Upgrading of Quercus mongollica bio-oil by esterification

에스터화 반응을 이용한 신갈나무 바이오오일 품질 개선

  • Chea, Kwang-Seok (Wood Chemistry Division, Forest Products Department National Institute of Forest Science) ;
  • Lee, Hyung-Won (Wood Chemistry Division, Forest Products Department National Institute of Forest Science) ;
  • Jeong, Han-Seob (Wood Chemistry Division, Forest Products Department National Institute of Forest Science) ;
  • Lee, Jae-Jung (Wood Chemistry Division, Forest Products Department National Institute of Forest Science) ;
  • Ju, Young-Min (Wood Chemistry Division, Forest Products Department National Institute of Forest Science) ;
  • Lee, Soo-Min (Wood Chemistry Division, Forest Products Department National Institute of Forest Science)
  • 채광석 (국립산림과학원 목재화학연구과) ;
  • 이형원 (국립산림과학원 목재화학연구과) ;
  • 정한섭 (국립산림과학원 목재화학연구과) ;
  • 이재정 (국립산림과학원 목재화학연구과) ;
  • 주영민 (국립산림과학원 목재화학연구과) ;
  • 이수민 (국립산림과학원 목재화학연구과)
  • Received : 2018.09.07
  • Accepted : 2018.10.04
  • Published : 2018.12.31

Abstract

Fast pyrolysis bio-oil has unfavorable properties that restrict its use in many applications. Among the main issues are high acidity, instability, and water and oxygen content, which give rise to corrosiveness, polymerization during storage, and a low heating value. Esterification and azeotropic water removal can improve all of these properties. A 500 g of Quercus mongollica which grounded 0.8~1.4 mm was processed into bio-oil via fast pyrolysis for 2 seconds at $550^{\circ}C$. The esterification consists of treating pyrolysis oil with a high boiling alcohol like n-butanol at $70^{\circ}C$ under reduced pressure (100 hPa). All products are analyzed for water mass fraction, viscosity, higher heating value, pH, FT-IR and GC/MS. The water mass fraction can be reduced by 91.4 % (from 31.5 % to below 2.7 %), the viscosity by 65.8 % (from 36.5 to 12.5 cP) and the higher heating value can be increased by 96.8 % (from 3,918 to 7,712 kcal/kg), the pH by 1.3 (from 2.7 to 4.0). FT-IR and GC/MS analysis indicated that labile acids, aldehydes, ketones and lower alcohols were transformed to stable target products. Using this approach, the water content of the pyrolysis oil is reduced significantly. These improvements should allow the utilization of upgraded pyrolysis liquids in standard boilers and as fuel in CHP (Combined heat and power) plants.

급속열분해 바이오오일은 사용 용도를 제한하는 바람직하지 않은 많은 특성을 가지고 있다. 낮은 산도, 불안정성, 수분과 산소 함량, 식성 증가, 저장동안에 중합 및 낮은 발열량이 적용을 제한하는 주요 특징이다. 에스터 반응을 이용한 공비 수분 제거는 이 모든 특성을 개선할수 있다. 본 연구에서는 바이오오일의 특성 변화를 알아보기 위하여 0.3~1.4 mm 크기의 신갈나무 시료 500 g을 $550^{\circ}C$에서 2초 동안 급속열분해하여 바이오오일을 제조하였다. 제조된 바이오오일을 감압(100 hPa) 조건에서 30 min 동안 비휘발성 알콜인 n-butanol 처리하였다. 제조 오일의 수분, 점도, 고위발열량, 산도, FT-IR 및 GC/MS을 분석하였다. 수분은 91.4 % 감소(from 31.5 % to below 2.7 %), 점도는 65.8 % 감소(from 36.5 to 12.5 cP), 발열량은 96.8 % 증가(from 3,918 to 7,712 kcal/kg), 산도는 1.3 증가했다(from 2.7 to 4.0). FT-IR 및 GC/MS 분석결과 불안정한 산성물질, 알데히드, 케톤 및 저급 알콜이 안정된 목표 물질로 변환한 것으로 나타났다. 특히 실험 수행 과정에서 급속열분해 바이오오일의 수분 함량이 상당히 감소했다. 이렇게 개선된 품질 개선된 급속열분해 바이오오일은 표준보일러와 열병합발전소(CHP)의 연료로 이용이 가능하다.

Keywords

HGOHBI_2018_v35n4_975_f0001.png 이미지

Fig. 1. Esterification with azeotropic water removal at (A) University of Groningen and (B) NREL[7-9].

HGOHBI_2018_v35n4_975_f0002.png 이미지

Fig. 2. Flow chart of fluidized bed reactor.

HGOHBI_2018_v35n4_975_f0003.png 이미지

Fig. 3. Changes of Residues, water and butanol in Bio-oil Using Distillation in Various Biooil-butanol(g-g).

HGOHBI_2018_v35n4_975_f0004.png 이미지

Fig. 4. Changes of Residues, water and butanol in Bio-oil Using Distillation in Various Biooil-butanol(g-g).

HGOHBI_2018_v35n4_975_f0005.png 이미지

Fig. 5. Changes of water and HHV (Higher heating value) in Bio-oil Using Distillation in Various Biooil-butanol(g-g).

HGOHBI_2018_v35n4_975_f0006.png 이미지

Fig. 6. Changes of viscosity and pH by using distillation in various biooil-butanol(g-g).

HGOHBI_2018_v35n4_975_f0007.png 이미지

Fig. 7. Changes of FT-IR by using distillation in various biooil-butanol(g-g).

HGOHBI_2018_v35n4_975_f0008.png 이미지

Fig. 8. Changes of GC/MS by using distillation in various biooil-butanol(g-g).

HGOHBI_2018_v35n4_975_f0009.png 이미지

Fig. 9. Changes of elemental by using distillation in various biooil-butanol(g-g).

Table 1. Components and elemental analysis of Quercus mongollica sample

HGOHBI_2018_v35n4_975_t0001.png 이미지

Table 2. FT-IR functional group compositions of pyrolysis oil [17-19]

HGOHBI_2018_v35n4_975_t0002.png 이미지

Table 3. Physical properties of bio-oil at before and after of application

HGOHBI_2018_v35n4_975_t0003.png 이미지

References

  1. K. S. Chea, H. S. Jeong, , B. J. Anh, J. J. Lee, Y. M. Ju and S. M. Lee, "Fuel characteristics of Yellow Poplar bio-oil by catalytic pyrolysis", J. of Korean Oil Chemists' Vol.34, No.1 pp.1-11 (2017).
  2. K. S. Chea, T. S. Jo, S. M. Lee, H. W. Lee and Y. K. Park, "Fuel Characteristics of Quercus variabilis bio-oil by Vaccum Distillation", J. of Korean Oil Chemists' Vol.33, No.1 pp.75-82 (2016). https://doi.org/10.12925/jkocs.2016.33.1.75
  3. K. M. Kim, B.S. Kim, K. S. Chea, T. S. Jo, S. D. Kim and Y. K. Park, "Ex-situ Catalysis Pyrolysis of Korea Native Oak Tree over Microporous Zeolites", J. of Korean Chem. Eng, Vol.27, No.4 pp.407-414 (2016).
  4. J. K. Kim, J. Y. Park, E. S. Yim and J. H. Ha, "Research Trend of Bio-oil Production from Biomass by using Fast Pyrolysis", J. of Korean Oil Chemists' Vol.31, No.3 pp.453-465 (2014). https://doi.org/10.12925/jkocs.2014.31.3.453
  5. K. S. Chea, T. S. Jo, S. H. Choi, S. M. Lee, H. W. Hwang and J. W. Choi, "Properties of Quercus variabilis bio-oil prepared by sample preparation", J. of Korean Oil Chemists' Vol.32, No.1 pp.83-91 (2015).
  6. S. K. Joo, I. G. Lee, H. W. Lee, K. S. Chea, T. S. Jo, S. C. Jung, S. C. Kim, C. H. Ko and Y. K. Park, "Catalytic Conversion of Pinus Densiflora Over Mesoporous Catalysts Using Pyrolysis Process", Nanoscience and Nanotechnology, Vol.16, No.2 pp.1616-1619 (2016). https://doi.org/10.1166/jnn.2016.12011
  7. F. H. Mahfud, I. Melian-Cabrera, R. Manurung, H. Heeres, "Upgrading of Flash Pyrolysis Oil by Reactive Distillation Using a High Boiling Alcohol and Acid Catalysts", J.Biomass to Fuels., Vol.85 (B5) pp.466-472 (2007).
  8. L. Moens, S. Black, K. M. D. Myers, ; S. Czernik, "Study of the Neutralization and Stabilization of a Mixed Hardwood Bio-Oil". Energy & Fuels, Vol.23, No.5 pp2695-2699 (2009) https://doi.org/10.1021/ef8009266
  9. T.Sundqvist, A. Oasmass and A. Koskinen, "Upgrading Fast Pyrolysis Bio-Oil Quality by Esterification and Azeotropic Water Removal", Energy & Fuels,Vol.29, No.4 pp.2527-2534 (2015) https://doi.org/10.1021/acs.energyfuels.5b00238
  10. C. Chiemchaisri, W. Chiemchaisri, T. Kornboonraksa, C. Dumrongsukit, S. Threedeach, H. H. Ngo and S. Vigneswaran, "Particle and microorganism removal in floating plastic media coupled with microfiltration membrane for surface water treatment". Water Sci Technol, Vol.51, No.10 pp.93-100 (2005).
  11. S. Czernik and A. Bridgwater, "Overview of applications of biomass fast pyrolysis oi"l. Energy & Fuels, Vol.18, No.2 pp.590-598 (2004). https://doi.org/10.1021/ef034067u
  12. D. Mohan, C. U. Pittman and P. H. Steele, "Pyrolysis of wood/biomass for bio-oil: A critical review". Energy & Fuels, Vol.20, No.3 pp.848-889 (2006). https://doi.org/10.1021/ef0502397
  13. M. Boucher, A. Chaala, H. Pakdel and C. Roy, "Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. PartII: stability and ageing of bio-oil and its blends with methanol and a pyrolytic aqueous phase". Biomass Bioenergy, Vol.19 pp.351-350 (2000). https://doi.org/10.1016/S0961-9534(00)00044-1
  14. R. Fahmi, A.V. Bridgwater, I. Donnison, N. Yates and J. M. Jones, "The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability". Fuel, Vol.87 pp.1230-1240 (2008). https://doi.org/10.1016/j.fuel.2007.07.026
  15. S. Czernik and A. Bridwater, "Overview of applications of biomass fast pyrolysis oil". Energy & Fuels, Vol.18 pp.590-598 (2004). https://doi.org/10.1021/ef034067u
  16. A. Oasmaa, D. C. Elliott and J. Korhonen, "Acidity of Biomass Fast Pyrolysis Bio-oils". Energy & Fuels, Vol.24, No.12 pp.6548-6554 (2010). https://doi.org/10.1021/ef100935r
  17. S. Sensoz, D. Angn, S. Yorgun, "Inuence of particle size on the pyrolysis of rapeseed(Brassica napus L.): fuel properties of bio-oil". Biomass and Bioenergy, Vol.19 pp.271-279 (2000). https://doi.org/10.1016/S0961-9534(00)00041-6
  18. L. Caroline, M. Daniel, H. Min, G. Richard, L. Xiang, L. Chun-Zhu, "An FT-IR spectroscopic study of carbonyl functionalities in bio-oils". Fuel, Vol.90 pp.3417-3423 (2011) https://doi.org/10.1016/j.fuel.2011.06.001
  19. V. Sugumaran, S. Prakash, E. Ramu, A. K. Arora, V. Bansal, V. Kagdiyal, D. Saxena, "Detailed characterization of bio-oil from pyrolysis of non-edible seed-cakes by Fourier Transform Infrared Spectroscopy (FTIR) and gas chromatography mass spectrometry (GC-MS) techniques". Journal of Chromatography Vol.1058 pp.47-56 (2017)
  20. A.V. Bridgewater, "Biomass fast pyrolysis", Thermal Science, Vol.8, No.2 pp.21-49 (2004) https://doi.org/10.2298/TSCI0402021B