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Introduction

Chinese cabbage (Brassica rapa subsp. Pekinensis) is a 

leafy vegetable plant belonging to the family Brassicaceae. It 

is an important vegetable plant that is consumed throughout 

the year in South Korea (Soengas et al., 2011; Kim et al., 

2013). The cultivation of Brassica crops has been increased 

in Korea (Kim et al., 2018). Annually, approximately 2 

million tons of Chinese cabbage is produced in Korea, 

accounting for 25% of total vegetable consumed in the 

country (Kim et al., 2014). Chinese cabbage is rich in 

calcium, vitamin C, α- and β-carotenoids, free amino acids, 

proline, and glucosinolates that possesses anti-carcinogenic 

and antioxidant properties (Wang et al., 2011; Lee et al., 

2015).

In South Korea, Chinese cabbage is cultivated in open field 

crop that are facing frequent water stress during their growing 

period because of climate change and abnormal weather (Lee 

et al., 2017). Especially, young stage of Chinese cabbage 

seedlings may be severely damage depending on intensity 

and the duration of drought stress (Bray, 1997). Preliminary 

experiment showed that after drought stress induction, plant 

growth parameters were significantly lower in the drought 
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treated plants than control plants. Drought treated Chinese 

cabbage increased glucosinolates (GLSs) contents at two 

weeks of drought stress (Shawon et al., 2017).

Further, drought stress has a negative effect on carotenoid 

synthesis in plants (Haisel et al., 2006; Zeid and Sheedeed, 

2006). Carotenoid is a functional component of Chinese 

cabbage, and it acts as an antioxidant and defends plant cells 

from light by the participating in light absorption (Demmig- 

Adams and Adams, 1996). Amino acids are identified as 

precursors and biosynthesis components of GLSs, proteins, 

and other nitrogen-based compounds (Gomes and Rosa, 

2000; Rai, 2002). Free amino acids also play important roles 

in the adaptation of plants to diverse habitat (Gomes and 

Rosa, 2000). Furthermore, it has been reported that free 

amino acid accumulation in plants increases under drought 

stress condition (Rai, 2002). Proline helps plants to overcome 

stress conditions, such as drought (Szabados and Savoure, 

2009). Accumulation of proline in plant is influenced by 

drought stress (Choudhary et al., 2005). 

However, to the best of our knowledge the effects of 

drought stress on plant growth parameters, carotenoids, free 

amino acid and proline accumulation in autumn growing 

cultivar of Chinese cabbage have not been widely studied in 

Korea, as well as in other parts of the world. Therefore, the 

aim of this study was to investigate morphological traits and 

changes in carotenoids, free amino acids, and proline content 

of autumn growing Chinese cabbage under drought stress 

condition.

Materials and Methods 

Plant material and treatment 

The experiment was undertaken in a greenhouse at the 

Wonkwang University, Iksan, Korea (latitude, 35°56'N; 

longitude, 126°57'E) during September-November, 2017. The 

seeds of Chinese cabbage (cv. Bulam Plus, Farm Hannong Co, 

Gyeonggi-do, Korea) were sown in a plug tray containing 

commercial growing media (Alpha-Plus; Sang-Lim Company, 

Iksan, South Korea). One-month-old seedlings were transplanted 

into plastic pots (28 ㎝ diameter × 22 ㎝ high) and maintained 

for up to three weeks (Fig. 1). The soil water content of 

drought treated and control plants were measured and 

maintained at 10% and 30% respectively (Fig. 2) by time- 

domain reflectometry (Field Scout TDR 100, Spectrum 

Technologies Inc, Aurora, USA). The seedlings received 

natural radiation and were watered daily using water can. 

Measurement of plant growth parameters 

At each harvest, Chinese cabbage plants were harvested at 

one, two, and three weeks after drought stress treatment. The 

number of leaves was counted manually, except those that 

were < 1 ㎝ in length. The plants were uprooted from pots, 

and the roots were carefully separated and washed with tap 

(A) (B)

Fig. 1. Growing stage of Chinese cabbage both growing 

control (A) and growing drought-treated (B). The soil water 

content in control plant and drought-treated plant was 

maintained at 10% and 30%, respectively. 

Fig. 2. Effect of drought stress on soil water content for three 

weeks. The soil water content in drought-stressed plants was 

measured and maintained at 10% by Time Domain Reflectometry 

(TDR). The control plants were maintained at 30% soil water 

content during the experiment period. 
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water. The leaf area per plant was measured using a leaf area 

meter (Li-3100, Li-Cor Inc., Neb., USA). The fresh weight of 

total leaves was measured using an electronic balance.

Measurement of carotenoid content

Freeze-dried leaves of Chinese cabbage were pulverized and 

the lyophilized powder was used in further analysis. The 

content of carotenoids was determined by the methods of 

Tuan et al. (2012) with slight modifications. Briefly, 500 ㎎ 

of lyophilized powder of Chinese cabbage was mixed 

vigorously with 5 ㎖ of ethanol for 5 min and added to boiling 

water bath (75℃). Subsequently, 1.5 ㎖ of 80% potassium 

hydroxide was added. After 10 min of incubation under with 

ice cold condition, 2.5 ㎖ of ultra-pure water was added to the 

solution. Further, the crude sample was separated after 

mixing with equal volume of hexane. The organic solvent 

layer was centrifuged at 3000 rpm for 3 min at 4℃. The 

collected upper layer of the extract was evaporated at room 

temperature and 2 ㎖ of dichloromethane/methanol (50:50, 

v/v) was added to dissolve the collected organic layer. For 

HPLC analysis, the filtered liquid was analyzed using a 

Perkin Elmer Flexar equipped with a C30 YMC column (250 

㎜ length × 4.6 ㎜ diameter, 3.0 ㎛ particle size; Waters 

Corporation, Milford, MA). The HPLC analysis was carried 

out with a flow rate of 1.0 ㎖/min and the detection wave-

length was measured at 454 ㎚. The column oven temperature 

was maintained at 40℃. The solvent system employed was 

(A) 25:75 (v/v) water/methanol and (B) 100% ethyl acetate. 

The gradient program used was as follows: 0 min, 0% B; 0-4 

min, 70% B; 4-20 min, 75% B; 20-28 min, 100% B; suddenly 

dropped to solvent 60% B at 28.1 min, and then maintained 

constant with solvent 60% B for 7 min (total 35 min). 

Individual carotenoids were quantified as ㎎ ㎏-1 dry weight 

(DW) by comparing the peak area of standard lutein, 

zeaxanthin, α-carotene, and β-carotene, respectively.

Measurement of free amino acid and proline

The 100 ㎎ of lyophilized powder in a 2 ㎖ test tube, 1.2 ㎖ of 

5% trichloroacetic acid (TCA) was added. The solution was 

vigorously vortexed for 5 min, incubated at room temperature 

for 60 min, and then centrifuged at 15,000 rpm for 15 min at 

4℃. The supernatant was diluted 100 times with 0.1 M HCl 

and the filtered through a 0.45 ㎛ PTFE syringe filter 

(Advantec DISMIC-13HP; Toyo Roshi Kaisha Ltd., Tokyo, 

Japan). The filtrate was then analyzed by high performance 

liquid chromatography (HPLC; Agilent Technologies, Palo 

Alto, CA). The HPLC analysis of free amino acids was 

carried out by ‘a rapid, accurate, sensitive, and reproducible 

HPLC analysis of amino acids’ using Zorbax Eclipse-AAA 

Columns and the Agilent 1100 HPLC. Briefly, the separation 

of free amino acids was performed on a Zorbax Eclipse-AAA 

analytical (150 ㎜ length × 4.6 ㎜ internal diameter (i.d.), 5 

㎛ particle size) column with guard column Zorbax Eclipse- 

AAA 4-Pack (12.5 ㎜ length × 4.6 ㎜ (i.d.), 5 ㎛ particle 

size; Agilent Technologies). The detection wavelength was 

measured at 338 ㎚, and the column oven temperature was 

maintained at 40℃. The injection volume was 10 ㎖. The 

solvent system was delivered at a rate of 2.0 ㎖/min and 

consisted of a mixture of 40 mM NaH2PO4·H2O (pH 7.8, 

solvent A) and CAN:MeOH:water (45:45:10, v/v/v) (solvent 

B). The gradient program used was as follows: 0 min, 0% B; 

0-1.9 min, 0% B; 1.9-21.1 min, 57% B; 21.1-21.6 min, 100% 

B; 21.6-25 min, 100% B; 25-25.1 min, 0% B; 25.1-30 min, 

0% B. Further, 50 pmol/µL amino acid was used the standard. 

The quantification of different amino acids was based on peak 

area and calculated as equivalents of standard compounds. 

The content of amino acid is expressed as ㎎/100 g dry weight 

(DW).

Statistical analysis 

The experimental design was conducted in a completely 

randomized design with 5 replications. The values are means 

± SD of five measurements. SAS software version 9.3 (SAS 

Institute, Cary, North Carolina, USA) was used for data 

analysis and identify significant effect of treatments. The 

ANOVA procedure was applied to determine significant 

difference followed by Duncan’s Multiple Range Test (DMRT) 

at (P ≤ 0.05) between treatments.

Results and Discussion 

Plant growth parameter

Up to 2 weeks after drought treatment, control plants and 

plants that had been treated with drought stress were not 
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significantly different for leaf number, leaf area and fresh 

weight of Chinese cabbage. At week 3 after drought treatment, 

drought stress treated plants were significantly reduced leaf 

number, leaf area, and fresh weight of Chinese cabbage 

subjected to drought stress when compared with those of the 

control plants (Table 1). Compared with those of the control 

plants, at three week after drought stress, the leaf area and 

fresh weight of plants subjected to drought stress decreased 

by 21.7% and 25.0%, respectively. A similar reduction in leaf 

area (25%) and fresh weight (34%) has been reported in 

springtime-growing Chinese cabbage (cv. Chunkwang) 

subjected to drought stress (Shawon et al., 2017). Other 

studies have also showed that a significant reduction in leaf 

number, leaf area, and fresh weight in several Brassica 

species including Brassica rapa (Issarakraisila et al., 2007), 

Brassica oleracea (Wu et al., 2012), Brassica napus (Qaderi 

et al., 2006; Naderikharaji et al., 2008; Sangtarash et al., 

2009), subjected to water stress. Water deficiency reduces 

plant growth by reducing turgor pressure, cell expansion, cell 

wall synthesis, and cell division (Hsiao, 1973; Jaleel et al., 

2009, Anjum et al., 2011). Under water stress condition, 

plants try to adapt by reducing their leaf area for limited 

transpiration (Mahajan and Tuteja, 2005; Manivannan et al., 

2007; Anjum et al., 2011). These results suggest that drought 

intensity, drought period, growing temperature and seedling 

age significantly influence plant growth parameters of 

Chinese cabbage under drought stress condition.

Free amino acid 

In the present study, the content of aspartate, glutamate, 

serine, glutamine, threonine, arginine, norvaline, and tryptophan 

together accounted for approximately 80% of the total free 

amino acid pool in both the control and drought-stressed plants 

(Table 2, Fig. 3). At week 2 of treatment, there was a reduction 

in free amino acid content in plants subjected to drought 

stress which might be responsible for the reduced level of free 

amino acids (including aspartate, glutamate, GABA, valine, 

and norvaline) (Table 2). However, two weeks of drought- 

stress increased serine and glutamine content in Chinese cabbage 

when compared with those in the control. Furthermore, after 

two weeks of drought treatment, vitamin-U and lysine were 

not detected in drought-stressed plants, whereas, these were 

detected in untreated plants. For up to two weeks of treatment, 

the content of total free amino acids was significantly reduced 

in the drought-stressed Chinese cabbage than in the untreated 

control (Table 2). Under stress condition, a change in free 

amino acid content in plants is one of the earliest symptoms 

(Rai, 2002). Generally, it has been reported that amino acid 

accumulation increases in plants such as sunflower and 

sorghum, under drought stress because of osmotic adjustment 

to alleviate detrimental effects (Morgan, 1984; Yadav et al., 

2005; Manivannan et al., 2007). The accumulation of amino 

acids during drought stress might be due to protein hydrolysis 

(Farooq et al., 2009). In contrast, drought stress decreased 

total free amino acid content in some plant species. For 

instance, El-bassiouny and Bekheta (2005) reported that water 

Table 1. Effect of drought stress on leaf number, leaf area and fresh weight of Chinese cabbage

Treatment Leaf number (no.) Leaf area (㎠) Fresh weight (g)

1 week after treatment

Control 10.4 ± z0.5ay 475.7 ± 79.6a 23.3 ± 4.4a

Drought 10.0 ± 0.7a 408.2 ± 109.1a 19.4 ± 5.2a

2 weeks after treatment

Control 13.8 ± 0.8a 948.8 ± 67.3a 52.4 ± 4.7a

Drought 12.6 ± 1.1a 849.7 ± 137.6a 45.6 ± 8.1a

3 weeks after treatment

Control 15.8 ± 0.6a 1307.3 ± 142.6a 76.7 ± 10.6a

Drought 14.4 ± 0.6b 1024.1 ± 111.6b 57.6 ± 7.0b

z± indicates the standard deviation of the mean (n = 5). 
yMeans within columns at each week sharing the same letter are not significantly different by Duncan’s Multiple Range Test at P≤0.05 

(n = 5).
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deficiency reduced total free amino acid content in wheat 

(Triticum aestivum). They showed that water deficiency 

decreased aspartate, valine, and lysine contents in wheat, 

whereas, there was an increase in glutamine and serine 

content. Glutamine accumulation has also been reported to 

increase in the leaves of rice (Oryza sativa) subjected to water 

deficiency (Yang et al., 2000). The content of aspartate and 

glutamate decreased in 28-d-old Lotus corniculatus, but the 

content of serine and glutamine increased under drought 

stress (Diaz et al., 2005). Glutamate act as a nitrogen source 

in the synthesis of glutamine from ammonia, and its synthesis 

is influenced by water stress condition in plants (Liaw and 

Eisenberg, 1994). During water stress, the activation of 

saccharopine pathway is one of the reasons for the decrease in 

aspartate content, leading to the accumulation of glutamine 

(Michaletti et al., 2017). The increase in serine content in 

plants might be due to high rate of photorespiration under 

water stress condition (Diaz et al., 2005). Additionally, age, 

cultivar, and drought intensity might be other reasons for the 

decreasing trend in total amino acid accumulation in Chinese 

cabbage under drought stress. Hausler et al. (2014) reported 

that amino acid catabolism depends on plant species and their 

developmental stages. 

Table 2. Effect of drought stress on individual free-amino acid content in Chinese cabbage 

Amino Acid

Free amino acid (㎎/100 g DW)

Weeks after treatment

1 2 3

Control Drought Control Drought Control Drought

Aspartate 82.13 ± z2.29 79.48 ± 2.13 100.63 ± 3.63 93.25 ± 3.40 63.43 ± 7.12 64.05 ± 5.85

Glutamate 79.34 ± 5.70 78.66 ± 4.29 96.27 ± 3.31 76.88 ± 2.89 77.16 ± 11.61 96.80 ± 16.21

Asparagine 32.91 ± 2.15 30.21 ± 6.64 32.49 ± 3.24 36.63 ± 11.64 20.67 ± 10.12 15.03 ± 12.14

Serine 72.66 ± 17.16 89.72 ± 27.86 67.94 ± 15.59 101.32 ± 5.15 57.64 ± 14.59 63.46 ± 25.17

Vitamin U 27.33 ± 7.85 20.18 ± 2.56 19.78 ± 4.53 ND ND ND

Glutamine 54.47 ± 5.01 54.57 ± 6.22 61.05 ± 7.12 78.88 ± 8.73 36.27 ± 19.93 44.75 ± 21.37

Histidine 12.78 ± 1.96 13.96 ± 0.87 9.04 ± 1.86 8.93 ± 1.82 6.39 ± 3.07 2.79 ± 0.92

Glycine 25.46 ± 2.31 16.46 20.61 ± 2.63 18.94 ± 2.00 18.27 ± 3.40 12.05 ± 3.39

Threonine 64.62 ± 5.76 55.44 ± 3.83 71.58 ± 5.45 56.70 ± 19.76 32.31 ± 24.87 28.92 ± 10.84

Arginine 49.94 ± 6.27 52.80 ± 4.51 42.43 ± 2.04 47.79 ± 8.56 35.28 ± 20.45 28.89 ± 15.01

Alanine 9.01 ± 1.14 10.21 ± 0.45 10.40 ± 0.61 12.32 ± 2.63 10.88 ± 3.28 10.77 ± 6.02

GABA 9.26 ± 1.35 8.11 ± 0.62 7.31 ± 0.62 6.39 ± 0.25 7.09 ± 0.82 5.33 ± 1.19

Tyrosine 5.82 ± 0.55 6.01 ± 0.97 5.50 ± 0.44 5.07 ± 0.19 4.98 ± 0.23 4.18 ± 0.48

Cystine 28.88 ± 1.22 27.70 ± 0.73 19.95 ± 1.90 18.93 ± 2.76 20.26 ± 1.56 ND

Valine 24.72 ± 2.45 19.91 ± 1.68 14.96 ± 0.76 11.00 ± 2.40 24.55 ± 14.28 ND

Methionine 24.54 ± 2.45 21.68 ± 0.72 24.25 ± 2.82 19.73 ± 4.51 26.29 ± 0.00 ND

Norvaline 390.27 ± 34.69 313.48 ± 10.81 272.37 ± 17.86 236.36 ± 8.94 357.34 ± 88.34 248.40 ± 125.58

Tryptophan 40.59 ± 5.02 31.66 ± 0.89 30.23 ± 3.00 26.78 ± 0.72 38.36 ± 1.85 32.54 ± 14.65

Phenylalanine 9.86 ± 1.49 8.15 ± 0.93 8.04 ± 0.77 9.53 ± 2.35 13.77 ± 5.07 10.08 ± 7.47

Isoleucine 2.18 ± 0.44 2.67 ± 0.49 2.70 ± 0.23 2.56 ± 0.40 ND ND

Leucine 3.05 ± 0.20 3.75 ± 0.82 NDy ND ND ND

Lysine 2.64 ± 0.50 1.95 ± 0.52 1.69 ± 0.40 ND ND ND

Total 1052.45 ± 46.51 946.76 ± 32.47 919.21 ± 18.37 867.98 ± 19.81 850.94 ± 88.16 668.02 ± 94.02

z± indicates the standard deviation of the mean (n = 5). 
yND = not detected.
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Fig. 3. High-performance liquid chromatography (HPLC) of total free amino acid in Chinese cabbage at 1 week after drought stress. 

The soil water content in control plant and drought-treated plant was maintained at 10% and 30%, respectively. 1, Aspartate; 2, 

Glutamate; 3, Asparagine; 4, Serine; 5, Vitamin U; 6, Glutamine; 7, Histidine; 8, Glycine; 9, Threonine; 10, Arginine; 11, Alanine; 

12, GABA; 13, Tyrosine; 14, Cystine; 15, Valine; 16, Methionine; 17, Norvaline; 18, Tryptophan; 19, Phenylalanine; 20, Isoleucine; 

21, Leucine; 22, Lysine.
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Carotenoid content

For up to two weeks of treatment, lutein, zeaxanthin, α- 

carotene, β-carotene, and total carotenoid were identified, 

and their content was not significantly different between the 

control and drought-stressed plants (Table 3, Fig. 4). At three 

weeks of treatment, the content of α-carotene and β-carotene 

in drought-stressed plants were significantly higher than that 

in the untreated plants (Table 3). In general, the carotenoid 

content was not affected or marginally reduced in drought- 

stressed plants. Zushi and Matsuzoe (1998) reported that 

water deficiency had no effect on the content of xanthophyll and 

β-carotene in tomatoes (Lycopersicon esculentum). In canola 

(Brassica napus), the carotenoid content was not significantly 

different between the control and drought-stressed plants under 

ambient UVB (Sangtarash et al., 2009).

A significant decrease in carotenoid content has been 

reported in several crops, subjected drought stress (Haisel et 

al., 2006). Drought stress might be negatively associated with 

photosynthesis process, which could be hindrance in the 

formation of photosynthetic pigments, including carotenoid 

(Zeid and Sheedeed, 2006). Sairam and Saxena (2000) 

reported that the antioxidant and pigment responses of plants 

are correlated during water stress. Preliminary studies have 

also showed that the antioxidants APX and SOD are unaffected 

in springtime-growing cultivar of Chinese cabbage subjected 

to three weeks drought stress (Shawon et al., 2017). 

Carotenoid biosynthesis depends on the growing stage of 

plants (Cazzonelli and Pogson, 2010). Carotenoid content 

showed a decreasing trend with age in both drought-tolerant 

and susceptible cultivars of wheat (Sairam and Saxena, 

2000). Carotenoid content in tobacco (Nicotiana tabacum) 

leaves also decreased with age (Prochazkova et al., 2009). 

The decrease in carotenoid content in older leaf correlated 

with leaf senescence, declining the content of photosynthetic 

pigments because of the violaxanthin cycle (Prochazkova et 

al., 2009).

In contrast, at three weeks after drought treatment, the total 

carotenoid content significantly increased in drought-stressed 

Chinese cabbage than in the untreated control (Table 3). 

Increased level of individual carotenoids, including α- 

carotene and β-carotene might have increased the total 

carotenoid content in three week drought-stressed plants. It is 

assumed that the intensity of drought and production of β- 

carotene are positively correlated. Simkin et al. (2008) and 

Yun et al. (2018) reported that drought intensity leads to the 

formation of ROS in plants. It is necessary for organisms to 

suppress the production of ROS (Jang and Park, 2018). 

However, β-carotenoid helps reduce the production of singlet 

oxygen in photosynthetic tissue by quenching triplet 

chlorophyll (Farooq et al., 2009).

Proline content

In the present study, the content of proline did not 

significantly differ between drought-treated and control 

Table 3. Effect of drought stress on total carotenoid content in Chinese cabbage 

Treatment 
Carotenoid (㎎/Kg DW)

Lutein Zeaxanthin α-Carotene β-Carotene Total

1 week after treatment

Control 682.68 ± z14.80ay 9.65 ± 0.80a 55.13 ± 2.29a 513.84 ± 17.73a 1261.29 ± 24.77a

Drought 713.32 ± 32.01a 7.64 ± 1.32a 60.64 ± 8.62a 563.01 ± 28.93a 1344.62 ± 57.12a

2 weeks after treatment

Control 441.19 ± 0.88a 8.73 ± 0.63a 21.98 ± 0.84a 292.21 ± 6.51a 764.11 ± 5.76a

Drought 441.21 ± 45.94a 9.05 ± 4.38a 24.12 ± 1.89a 314.30 ± 21.25a 788.67 ± 51.70a

3 weeks after treatment

Control 414.85 ± 9.43a 8.75 ± 0.49a 22.24 ± 1.38b 292.31 ± 4.13b 738.15 ± 7.18b

Drought 437.95 ± 15.01a 7.32 ± 0.15b 27.69 ± 0.18a 306.47 ± 6.95a 779.43 ± 17.09a

z± indicates the standard deviation of the mean (n = 5). 
yMeans within columns at each week sharing the same letter are not significantly different by Duncan’s Multiple Range Test at 

P≤0.05 (n = 5).
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Chinese cabbage (Figs. 5 and 6). Similar results have also 

been reported by other studies. Pirzad et al. (2011) showed 

that proline content in Matricaria chamomilla L. was not 

affected by water deficiency, when field capacity maintained 

at 55%-100%. Chutia et al. (2012) reported that drought 

stress (osmotic potential of 0.15 bar by PEG 6000) did not 

significantly affect the proline content of four different rice 

cultivars.

Proline is an organic osmolyte that helps in osmotic 

adjustment in plants under stress, such as high salinity, high 

temperature, and drought stress (Ueda et al., 2001; Ashraf 

and Foolad, 2007; Jaleel et al., 2009). A significant increase 

in proline accumulation in plants is a common phenomenon 

under drought stress condition (Choudhary et al., 2005). 

Hayat et al. (2008) reported that during drought stress, 

proline accumulation significantly increased in 20-d and 30-d 

old tomato seedlings. Turkan et al. (2005) showed that in 

35-d-old bean cultivar seedlings (P. vulgaris, and P. acutifolius) 

Fig. 4. High-performance liquid chromatography (HPLC) of carotenoid in Chinese cabbage at 2 weeks after drought stress. The soil 

water content in control plant and drought-treated plant was maintained at 10% and 30%, respectively. 1, Lutein; 2, Zeaxanthin; 3, 

α-Carotene; 4, β-Carotene.
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subjected to drought stress (PEG 6000) for two weeks, there 

was an increase in proline accumulation. Furthermore, 

drought stress-induced, increase in proline synthesis was 

observed in chick pea (Mafakheri et al., 2010) and wheat 

(Vendruscolo et al., 2007). Reduced glutamate content might 

be responsible for the non-significant proline accumulation in 

Chinese cabbage observed in the present study, as glutamate 

is the major source of proline synthesis in plants under 

osmotic stress (Choudhary et al., 2005).

In conclusion, the result of the present study showed that 

drought stress in Chinese cabbage significantly reduced plant 

growth parameters and affected the content of total and 

individual free amino acids and carotenoid. However, during 

three weeks of drought stress, there was no significant change 

in the content of proline in Chinese cabbage.
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