DOI QR코드

DOI QR Code

Flow-Induced Noise Prediction for Submarines

잠수함 형상의 유동소음 해석기법 연구

  • Yeo, Sang-Jae (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Hong, Suk-Yoon (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Song, Jee-Hun (Department of Naval Architecture and Ocean Engineering, Chonnam National University) ;
  • Kwon, Hyun-Wung (Department of Naval Architecture and Ocean Engineering, Koje College) ;
  • Seol, Hanshin (Korea Research Institute of Ships & Ocean Engineering)
  • 여상재 (서울대학교 조선해양공학과) ;
  • 홍석윤 (서울대학교 조선해양공학과) ;
  • 송지훈 (전남대학교 조선해양공학전공) ;
  • 권현웅 (거제대학교 조선해양공학과) ;
  • 설한신 (한국해양과학기술원 부설 선박해양플랜트연구소)
  • Received : 2018.11.08
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

Underwater noise radiated from submarines is directly related to the probability of being detected by the sonar of an enemy vessel. Therefore, minimizing the noise of a submarine is essential for improving survival outcomes. For modern submarines, as the speed and size of a submarine increase and noise reduction technology is developed, interest in flow noise around the hull has been increasing. In this study, a noise analysis technique was developed to predict flow noise generated around a submarine shape considering the free surface effect. When a submarine is operated near a free surface, turbulence-induced noise due to the turbulence of the flow and bubble noise from breaking waves arise. First, to analyze the flow around a submarine, VOF-based incompressible two-phase flow analysis was performed to derive flow field data and the shape of the free surface around the submarine. Turbulence-induced noise was analyzed by applying permeable FW-H, which is an acoustic analogy technique. Bubble noise was derived through a noise model for breaking waves based on the turbulent kinetic energy distribution results obtained from the CFD results. The analysis method developed was verified by comparison with experimental results for a submarine model measured in a Large Cavitation Tunnel (LCT).

잠수함에서 발생하는 수중방사소음은 적함의 소나에 의해 피탐될 확률과 직결되며, 잠수함 저소음화 방안은 생존성 향상을 위해 필수적이다. 최신 잠수함의 경우 기계류 소음저감 및 고속/대형화가 진행됨에 따라 선체 주위에 발생하는 유동소음에 대한 관심이 높아지고 있다. 본 연구에서는 자유수면의 효과를 고려하여 잠수함 형상 주위에 발생하는 유동소음 수준을 예측할 수 있는 소음해석기법을 개발하였다. 잠수함이 자유수면 근처 운항시에 잠수함 주위 유동장의 교란에 의해 발생하는 난류유동소음과 쇄파버블에 의한 소음이 발생한다. 먼저 잠수함 주위 유동장 해석을 위해, VOF법 기반의 비압축성 이상유동(two-phase flow)해석을 수행하여 잠수함 주위 자유수면 형상과 유동장 정보를 도출하였다. 이후 난류유동소음해석을 위해 음향상사기법인 Permeable FW-H를 적용하였고, 쇄파버블 소음해석을 위해 유동해석에서 도출된 난류운동에너지 분포결과를 기반으로 쇄파버블 소음모델을 적용하였다. 최종적으로 개발된 유동소음 해석기법은 선박해양플랜트연구소(KRISO)의 대형캐비테이션터널(LCT)에서 수행된 잠수함 모형 유동소음계측 실험결과와 비교를 통해 검증을 수행하였다.

Keywords

References

  1. Choi, W. S., S. Y. Hong, J. H. Song, H. W. Kwon and C. M. Jung(2014), Turbulent-Induced Noise around a Circular Cylinder using Permeable FW-H Method, Journal of the Korean Society of Marine Environment & Safety, Vol. 20, No. 6, pp. 752-759. https://doi.org/10.7837/kosomes.2014.20.6.752
  2. Choi, W. S., Y. S. Choi, S. Y. Hong, J. H. Song, H. W. Kwon and C. M. Jung(2016), Turbulence-induced noise of a submerged cylinder using a permeable FW H method, International Journal of Naval Architecture and Ocean Engineering, Vol. 8, No 3, pp. 235-242. https://doi.org/10.1016/j.ijnaoe.2016.03.002
  3. Curle, N. (1955), The influence of solid boundaries upon aerodynamic sound, Proceedings of the Royal Society of London. Series A, Mathmatical and Physical Science, Vol. 505, pp. 505-514.
  4. Deane, G. B. and M. D. Stokes(2010), Model calculations of the underwater noise of breaking waves and comparison with experiment, The Journal of the Acoustical Society of America, Vol. 127, No. 6, pp. 3394-3410. https://doi.org/10.1121/1.3419774
  5. Deane, G. B. and M. D. Stokes(2002), Scale dependence of bubble creation mechanisms in breaking waves. Nature, Vol. 418, No. 6900, p. 839. https://doi.org/10.1038/nature00967
  6. Farassat, F. (2007), Derivation of Formulations 1 and 1A of Farassat, NASA/TM-2007-214853.
  7. Farassat, F. and K. S. Brentner(1988), Supersonic Quadrupole Noise Theory for High-speed Helicopter Roters, Journal of Sound and Vibration, Vol. 218, No. 3, pp. 481-500. https://doi.org/10.1006/jsvi.1998.1836
  8. Ffowcs Williams, J. E. and D. L. Hawkings(1969), Sound generation by turbulence and surfaces in arbitrary motion, Philosophical Transactions of the Royal Society of London A, Vol. 264, No. 1151, pp. 321-342. https://doi.org/10.1098/rsta.1969.0031
  9. Hinze, J. O. (1955), Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE Journal, Vol. 1, No. 3, pp. 289-295. https://doi.org/10.1002/aic.690010303
  10. Ianiello, S., R. Muscari and A. Di Mascio(2014), Ship underwater noise assessment by the acoustic analogy, part II: hydroacoustic analysis of a ship scaled model, Journal of Marine Science and Technology, Vol. 3, No. 1, pp. 52-74.
  11. Lighthill, M. J. (1952), On Sound Generated Aerodynamically, I: General Theory, Proceedings of the Royal Society, A221, pp. 564-587.
  12. OpenFOAM(2018), https://www.openfoam.com/.
  13. Prosperetti, A. (1977), Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids. The Journal of the Acoustical Society of America, Vol. 61, No. 1, pp. 17-27. https://doi.org/10.1121/1.381252
  14. Testa, C. and L. Greco(2018), Prediction of submarine scattered noise by the acoustic analogy, Journal of Sound and Vibration, Vol. 426, pp. 186-218. https://doi.org/10.1016/j.jsv.2018.04.011
  15. Wang, M., J. B. Freund and S. K. Lele(2006), Computational Prediction of Flow-Generated Sound, Annual Review of Fluid Mechanics, Vol. 38, pp. 483-512. https://doi.org/10.1146/annurev.fluid.38.050304.092036