DOI QR코드

DOI QR Code

고화제로 안정처리 된 울산지역 노상재료의 강도 및 다짐특성 - 주 성분이 CaO와 SO3인 고화제 -

Strength and Compaction Characteristics of Binder-Stabilized Subgrade Material in Ulsan Area - Main Binder Components : CaO and SO3 -

  • 투고 : 2018.11.22
  • 심사 : 2018.12.20
  • 발행 : 2018.12.31

초록

본 연구에서는 고화제를 이용하여 개량된 노상재료의 배합에 따른 공학적 특성과 지지력을 분석하기 위하여 실내 및 현장시험을 실시하였다. 노상토 개량에 고화제로 사용된 재료의 주성분은 CaO와 $SO_3$이다. 고화제를 현장 토공재료인 저소성 점토(CL)와 혼합한 후 입도분포는 체 굵기가 커질수록 상대적으로 통과율이 낮아져 실트질 모래(SM)로 흙의 종류가 바뀌었을 뿐 아니라 소성지수와 수정 CBR 등의 공학적 특성이 노상토에 적합하게 개선되었다. 동일한 에너지로 다짐된 개량토의 다짐곡선으로부터 최대건조단위중량은 현장토 대비 약 6%가량 증가하고 최적함수비는 약간 감소하여 상당히 입도가 개선되었다. 실내 CBR 시험에서도 동일한 다짐에너지에서 적당량의 고화제를 투입한 개량토의 단위중량과 강도 증대효과가 현저히 크게 나타났다. 고화제 투입 후 조립분의 비율이 상대적으로 증가함으로 인하여 현장토 대비 초기다짐 시 팽창비가 3.3배 이상 감소되었고, 최종다짐 시에는 6.5배 이상 작게 나타났다. 시험시공이 이루어진 구간에서 일축압축강도는 설계강도 이상을 확보하면서 균질한 값을 유지하였다. 동일한 시공조건으로 현장에 적용한 후 확인시험 결과에서도 다짐 1일 후 시험한 6개소 모두의 지지력계수가 적절한 수준에서 목표값을 상회하고 그 변동성도 양호한 것으로 나타났다.

In this study, the engineering properties including bearing capacity of subgrades stabilized with a binder are analyzed by laboratory and field experiments. The main components of the binder are CaO and $SO_3$. After the binder was mixed with a low plasticity clay, the passing rates were relatively decreased as the sieve mesh size increased. Not only did the soil type change to silty sand, but engineering properties, such as the plasticity index and modified California bearing ratio (CBR), were improved for the subgrade. A comparison of the compaction curves of the stabilized subgrade and field soil compacted with the same energy demonstrated an increase of approximately 6% in the maximum dry unit weight, slight decrease in optimum moisture content, and considerable increase improvement in grain size. In the modified CBR test, the effect of unit weight and strength increase of the modified soil (with a specific amount of binder) was remarkably improved. As the proportion of granulated material increased after the addition of binder, the swelling was reduced by 3.3 times or more during initial compaction and 6.5 times by final compaction. The unconfined compressive strength of the specimens was maintained at the homogeneous value with a constant design strength. The stabilized subgrade was validated by applying it in the field under the same conditions; this test demonstrated that the bearing capacity coefficients at all six sites after one day of compaction exceeded the target value and exhibited good variability.

키워드

GJBGC4_2018_v34n12_105_f0001.png 이미지

Fig. 1. Strength changes with curing time

GJBGC4_2018_v34n12_105_f0002.png 이미지

Fig. 2. Strength changes after 7days with binder content

GJBGC4_2018_v34n12_105_f0003.png 이미지

Fig. 3. Particle distribution curves

GJBGC4_2018_v34n12_105_f0004.png 이미지

Fig. 4. Correlation between compaction curve and CBR

GJBGC4_2018_v34n12_105_f0005.png 이미지

Fig. 5. Unit weight with blows per layer

GJBGC4_2018_v34n12_105_f0006.png 이미지

Fig. 6. Water content and CBR with blows per layer

GJBGC4_2018_v34n12_105_f0007.png 이미지

Fig. 7. CBR with blows per layer

GJBGC4_2018_v34n12_105_f0008.png 이미지

Fig. 8. Swelling with blows per layer

GJBGC4_2018_v34n12_105_f0009.png 이미지

Fig. 9. Dry unit weight and unconfined compressive strength

GJBGC4_2018_v34n12_105_f0010.png 이미지

Fig. 10. Water content and unconfined compressive strength

GJBGC4_2018_v34n12_105_f0011.png 이미지

Fig. 11. Results of plate bearing test

GJBGC4_2018_v34n12_105_f0012.png 이미지

Fig. 12. Comparison of construction with trial test

Table 1. Properties of the binder

GJBGC4_2018_v34n12_105_t0001.png 이미지

Table 2. Properties of raw subgrade materials

GJBGC4_2018_v34n12_105_t0002.png 이미지

Table 3. Design of strength for subgrade materials

GJBGC4_2018_v34n12_105_t0003.png 이미지

Table 4. Conditions for laboratory mixing test

GJBGC4_2018_v34n12_105_t0004.png 이미지

Table 5. Compaction energy for manufacturing specimens

GJBGC4_2018_v34n12_105_t0005.png 이미지

Table 6. Properties of improved subgrade materials

GJBGC4_2018_v34n12_105_t0006.png 이미지

Table 7. Subgrade conditions and swelling

GJBGC4_2018_v34n12_105_t0007.png 이미지

Table 8. Laying thickness and number of times of compaction

GJBGC4_2018_v34n12_105_t0008.png 이미지

참고문헌

  1. Ministry of Land, Infrastructure and Transport (2016), KDS 44 30 00: 2016 Road Earth Works, p.2 (in Korean).
  2. Ministry of Land, Transport and Maritime Affairs (2011), 2011 Road Pavement Integrated Guidelines, pp.88-92 (in Korean).
  3. Hong, S., Kim, Y. and Bae, G. (2015), "Geotechnical Characteristics of a Waste Lime Embankment", The Journal of Engineering Geology, Vol.25, No.4, pp.547-555. https://doi.org/10.9720/kseg.2015.4.547
  4. Lee, K., Jang, T., Hwang, T. and Song, Y. (2011), "Strength Properties of Subgrade Soil Modified by Cement", Journal of Korean Society of Hazard Mitigation, Vol.11, No.5, pp.141-147 (in Korean). https://doi.org/10.9798/KOSHAM.2011.11.5.141
  5. Phoon, K. K. and Kulhawy, F. H. (1996), "On Quantifying Inherent Soil Variability", Uncertainty in the Geologic Environment, Madison, WI, ASCE, pp.326-340.
  6. Shin, E. and Park, S. (2018), "Application of Paper Sludge Ash- Stabilized Soft Ground for Subgrade Soil", Journal of the Korean Geo-Environmental Society, Vol.19, Issue 6, pp.13-22 (in Korean). https://doi.org/10.14481/JKGES.2018.19.6.13
  7. Yeon, Y. (2017), Development of Eco-Friendly Solidification Agent for Improving Engineering Properties of Clay Ground, Ph.D. Thesis, Chungbuk National University, pp.107-109 (in Korean).
  8. Yu, G. (2011), Strength and Permeability Characteristics of soil solidified with agents made of Industrial by-products, M.S. Thesis, Chonnam National University, pp.27-62 (in Korean).