DOI QR코드

DOI QR Code

유한요소해석에 의한 측방이동 방지효과에 대한 연구

A Study on the Prevention Effect of Lateral Movement by Finite Element Analysis

  • 박춘식 (창원대학교 토목환경화공융합공학부) ;
  • 노태경 (창원대학교 친환경해양플랜트 FEED공학)
  • Park, Choon-Sik (Dept. of Civil Environment Chemical Engrg., Changwon National Univ.) ;
  • Rho, Tae-Kyung (Dept. of Eco Friendly Offshore FEED Engrg., Changwon National Univ.)
  • 투고 : 2018.10.30
  • 심사 : 2018.12.04
  • 발행 : 2018.12.31

초록

본 연구는 측방이동으로 인한 구조물의 안정성에 영향을 주는 각 인자(성토 높이, 성토부로부터 지하매설물까지의 이격 거리, 연약지반의 깊이, 연약지반의 압축지수 및 팽창지수)별에 대한 합리적이고 경제성 있는 보강길이를 제시하였다. 이러한 결과들을 토대로 각 인자들의 영향 정도를 파악하고, 어떠한 인자가 측방이동에 가장 영향을 미치는가를 파악하였다. 유한요소 해석프로그램을 이용하여 연약지반 상에 성토가 이루어지는 경우의 단면을 모델링하여 해석을 수행하였으며, 연약지반의 보강은 심층혼합공법(DCM)을 이용하였다. 그 결과 성토 높이 증가에 따른 보강길이의 증가율은 약 9~50%, 연약지반 심도 증가에 따른 보강길이의 증가율은 약 13~30%, 성토부로부터 지하 매설물의 이격 거리 감소에 따른 보강길이의 증가율은 약 7~25%, 압축지수 증가에 따른 보강길이의 증가율은 약 3~25%로 나타났다. 또한 각 인자별로 서로에 대한 영향성을 분석하였다. 그 결과 연약지반 심도의 보강길이 최대 최소 기울기비는 이격거리 변화에 큰 영향을 받았으며 이외의 인자들은 연약지반 심도의 변화에 따라 최대 최소 기울기 비가 큰 영향을 받았다. 한편 연약지반의 심도가 깊어질수록 성토높이에 따른 보강길이의 최대-최소기울기의 비는 3.75, 이격 거리에 따른 보강길이의 최대-최소기울기의 비는 4.3, 압축지수에 따른 최대-최소기울기의 비는 2.5로 나타났다. 이를 통해 세 개의 인자는 연약지반의 심도에 대한 영향을 크게 받는 것으로 확인되었다.

This study presents a reasonable and economical DCM reinforcement length for the various factors (the embankment height, the distance from the embankment to the underground structure, the depth of the soft ground, and the compression index and the swelling index of the soft ground) that affect the stability of the structure due to lateral movement. Based on these results, we analyzed each factor's degree of influence and figured out which factor influenced the lateral movement most. The cross section of the embankment on the soft ground was modeled by using the Finite Element Program and reinforced with DCM. The results show that the increase rate of the reinforcement length with the increase of the embankment height is about 9~50%, the increase rate of the reinforcement length with the depth of soft ground is about 13~30%, and the increase rate of the reinforcement length with increasing compression index is about 3~25%. In addition, the influence of each factor on each other was analyzed. As a result, among the separation distance, the compressive index and the maximum to minimum slope ratio of the reinforcement length of the embankment height, the separation distance was the largest for the depth of soft ground. As the depth of the soft ground increases, the ratio of the maximum to minimum slope of the reinforcement length according to the embankment height is 3.75, the ratio of the maximum to minimum slope of the reinforcement length according to the spacing distance is 4.3, and the ratio of maximum to minimum slope according to compression index is 2.5. From these results, it is confirmed that the three factors are greatly affected by the depth of soft ground.

키워드

GJBGC4_2018_v34n12_71_f0001.png 이미지

Fig. 1. Method of tschebotarioff judgement

GJBGC4_2018_v34n12_71_f0002.png 이미지

Fig. 2. Method of lateral movement index judgement

GJBGC4_2018_v34n12_71_f0003.png 이미지

Fig. 3. Modelling example

GJBGC4_2018_v34n12_71_f0004.png 이미지

Fig. 4. Plot of L vs. H and slope of D vs. Z

GJBGC4_2018_v34n12_71_f0005.png 이미지

Fig. 5. Plot of L vs. H and slope of Z vs. Cc

GJBGC4_2018_v34n12_71_f0006.png 이미지

Fig. 6. Plot of L vs. H and slope of Cc vs. D

GJBGC4_2018_v34n12_71_f0007.png 이미지

Fig. 7. Plot of L vs. H and slope of H vs. Z

GJBGC4_2018_v34n12_71_f0008.png 이미지

Fig. 8. Plot of L vs. H and slope of Z vs. Cc

GJBGC4_2018_v34n12_71_f0009.png 이미지

Fig. 9. Plot of L vs. H and slope of Cc vs. H

GJBGC4_2018_v34n12_71_f0010.png 이미지

Fig. 10. Plot of L vs. Z and slope of H vs. D

GJBGC4_2018_v34n12_71_f0011.png 이미지

Fig. 11. Plot of L vs. Z and slope of D vs. Cc

GJBGC4_2018_v34n12_71_f0012.png 이미지

Fig. 12. Plot of L vs. Z and slope of Cc vs. H

GJBGC4_2018_v34n12_71_f0013.png 이미지

Fig. 13. Plot of L vs. Cc and slope of H vs. D

GJBGC4_2018_v34n12_71_f0014.png 이미지

Fig. 14. Plot of L vs. Cc and slope of D vs. Z

GJBGC4_2018_v34n12_71_f0015.png 이미지

Fig. 15. Plot of L vs. Cc and slope of Z vs. H

Table 1. Properties of steel pipe

GJBGC4_2018_v34n12_71_t0001.png 이미지

Table 2. Ground properties

GJBGC4_2018_v34n12_71_t0002.png 이미지

Table 3. Analytical condition

GJBGC4_2018_v34n12_71_t0003.png 이미지

Table 4. Increasing ratio (R) of L with change of H

GJBGC4_2018_v34n12_71_t0004.png 이미지

Table 5. Increasing ratio (R) of L with change of D

GJBGC4_2018_v34n12_71_t0005.png 이미지

Table 6. Increasing ratio (R) of L with change of Z

GJBGC4_2018_v34n12_71_t0006.png 이미지

Table 7. Increasing ratio (R) of L with change of Cc

GJBGC4_2018_v34n12_71_t0007.png 이미지

참고문헌

  1. Terzaghi, K. and Peck, R.B. (1967), "Soil Mechanics in Engineering Practice", John Wiley and Sons. Inc, New York, 2nd Ed., pp.729.
  2. Skempton, A.W. and Jones, O.T. (1944) "Notes on the Compressibility of Clays" Quarterly Journal of the Geological Society, pp.100, pp.119-135.
  3. Choi, S.M. (2000), "A Study on the Relationship between the Physical Properties of Soil and the Compression Index of Soft Clay in Gyungnam Region", Master's Thesis, Changwon National University.
  4. Peck, R.B. (1969), "Advantages and Limitations of the Observational Method in Applied Soil Mechanics", Geotechnique, Volume 19 Issue 2, pp.171-187. https://doi.org/10.1680/geot.1969.19.2.171
  5. Tschebotarioff, G.P. (1973), "Foundations, Retaining and Earth Structure", McGraw-Hill, New York, pp.415-457.
  6. Tominaga and Hashimoto (1974), "On the Embankment Control Through the Field Measurement of Lateral Movements", The Japanese Geotechnical Society, No.830, pp.43-51.
  7. Matsuo, M. and Kawamura, K. (1977), "Diagram of Construction Control of Embankment on Soft Ground. Soil and Foundations", Soil and Foundations, Volume 17, No.3.
  8. Sekiguchi, H. and Shibata, T. (1979), "Undrained Behaviour of Soft Clay under Embankment Loading", Proc. 3rd Int. Conf. on Numer. Meth. in Geotech. Engrg.
  9. Hong, W.P. (1994), "A Study on Lateral Movement of Bridge Abutment on Soft Ground", Journal of the Korean geotechnical society, Volume 10, No.4, pp.53-65.
  10. Kwon, S.J. (1995), "A Numerical Analysis of Lateral Flow in Soft Foundation under Emankment", Master's Thesis, Chonnam National University.
  11. Chang, Y.C. and Choi, Y.C. (1996), "A Study on Application of Discriminant Equations In Korea", Journal of the Korean geotechnical society, Volume 1996, No.3, pp.249-256.
  12. Lee, H.G. (2008), "An Analytical Study of Reinforcement Length in the Protection Method of Lateral Movement", Doctor's Thesis, Changwon National University.
  13. Park, C.S., Kim, J.H., and Baek, J.S. (2013), "A Study on the Influence Range of Lateral Movement of Abutment on the Soft Clay by MCC Model", Korean geotechnical society, Volume 33, No.1.