DOI QR코드

DOI QR Code

RAW 264.7 세포에서 Desmodium heterocarpon 추출물의 항산화 및 항염증 활성

Anti-oxidative and Anti-inflammatory Activities of Desmodium heterocarpon Extract in RAW 264.7 Cells

  • 이수현 (동의대학교 블루바이오소재개발 및 실용화 지원센터) ;
  • 진경숙 (동의대학교 블루바이오소재개발 및 실용화 지원센터) ;
  • 손유리 (동의대학교 블루바이오소재개발 및 실용화 지원센터) ;
  • 권현주 (동의대학교 블루바이오소재개발 및 실용화 지원센터) ;
  • 김병우 (동의대학교 블루바이오소재개발 및 실용화 지원센터)
  • Lee, Su Hyeon (Blue-Bio Industry Regional Innovation Center, Dong-Eui University) ;
  • Jin, Kyong-Suk (Blue-Bio Industry Regional Innovation Center, Dong-Eui University) ;
  • Son, Yu Ri (Blue-Bio Industry Regional Innovation Center, Dong-Eui University) ;
  • Kwon, Hyun Ju (Blue-Bio Industry Regional Innovation Center, Dong-Eui University) ;
  • Kim, Byung Woo (Blue-Bio Industry Regional Innovation Center, Dong-Eui University)
  • 투고 : 2017.11.08
  • 심사 : 2018.02.09
  • 발행 : 2018.02.28

초록

Desmodium heterocarpon은 콩과에 속하는 덩굴식물로 주로 한국, 일본 등의 아시아 국가에 분포되어 있다. 본 연구에서는 식물에 존재하는 신규 기능성 소재 개발의 일환으로 Desmodium heterocarpon 에탄올 추출물(DHEE)의 항산화 및 항염증 생리활성을 DPPH 라디칼 소거능, ROS 소거능, NO 생성 억제능 및 관련 단백질 발현을 통해 분석하였다. 먼저 DHEE의 항산화능을 DPPH 라디칼 소거능을 통해 분석한 결과 높은 소거활성을 보여 DHEE가 매우 강한 항산화능을 보유함을 확인하였다. 또한 RAW 264.7 세포주에서 H2O2에 의해 유도된 ROS에 대한 DHEE의 소거능을 분석한 결과 농도의존적인 강한 ROS 소거능을 보였다. 뿐만 아니라 대표적인 항산화 효소 중 하나로 항산화능 보유 천연물에 의해 발현이 유도되는 HO-1 및 그 전사 인자인 Nrf2의 단백질 발현이 DHEE의 처리에 의해 유의적으로 증가됨을 보였다. 한편 DHEE가 LPS에 의해 유도된 NO 생성에 미치는 영향을 분석한 결과 농도 의존적인 NO 생성 저해능을 보였으며 이는 NO 생성 단백질인 iNOS의 발현 저해에서 기인함을 확인하였다. 이러한 결과를 통해 DHEE의 높은 항산화능과 항염증 활성을 확인하였으며 향후 잠재적인 기능성 소재로서 유용하게 활용될 수 있을 것으로 판단된다. 추후 계속적인 연구를 통해 활성 물질의 규명이 필요할 것으로 보인다.

Desmodium heterocarpon is one of vines belongs to Fabaceae family, mainly distributed in Asian countries such as Korea and Japan. This study was conducted to explore new nutraceutical resources from the plant kingdom possessing biological activities. To fulfill this purpose, the anti-oxidative and anti-inflammatory activities of D. heterocarpon ethanol extract (DHEE) were evaluated by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity assay, reactive oxygen species (ROS) scavenging activity assay, nitric oxide (NO) inhibitory activity assay, and the analysis of related protein expressions by Western blot hybridization. DHEE exhibited potent anti-oxidative activity as confirmed by DPPH radical scavenging capacity against DPPH similar with ascorbic acid, a well-known anti-oxidative agent, used as a positive control. DHEE also effectively suppressed hydrogen peroxide ($H_2O_2$)-induced ROS on RAW 264.7 murine macrophage cells. Furthermore, DHEE induced the expression of the anti-oxidative enzyme heme oxygenase 1 (HO-1), and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2) as a dose dependent manner. DHEE inhibited lipopolysaccharide (LPS) induced nitric oxide (NO) formation as a consequence of inducible NO synthase (iNOS) down regulation. Taken together, these results suggest that DHEE has anti-oxidative and anti-inflammatory activities and thus appears to be useful sources as potential anti-oxidant and anti-inflammatory agents. The identification of active compounds that confer biological activities of DHEE might be needed.

키워드

참고문헌

  1. Al Hasan, A., Hasan, C. M. and Azam, A. T. M. Z. 2011. Antimicrobial, cytotoxic and antioxidant activities of Desmodium heterocarpon. Bangladesh Pharm. J. 14, 0301-4606.
  2. Albina, J. E. and Reichner, J. S. 1995. Nitric oxide in inflammation and immunity. New Horiz. 3, 46-64.
  3. Balogun, E., Hoque, M., Gong, P., Killeen, E., Green, C. J., Foresti, R., Alam, J. and Motterlini, R. 2003. Curcumin activates the heme oxygenase-1 gene via regulation of Nrf2 and the antioxidant responsive element. Biochem. J. 371, 887-895. https://doi.org/10.1042/bj20021619
  4. Cencioni, C., Spallotta, F., Martelli, F., Valente, S., Mai, A., Zeiher, A. M. and Gaetano, C. 2013. Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int. J. Mol. Sci. 14, 17643-17663. https://doi.org/10.3390/ijms140917643
  5. Gonzalez-Burgos, E. and Gomez-Serranillos, M. P. 2012. Terpene compounds in nature: a review of their potential antioxidant activity. Curr. Med. Chem. 19, 5319-5341. https://doi.org/10.2174/092986712803833335
  6. Guha, M. and Mackman, N. 2001. LPS induction of gene expression in human monocytes. Cell Signal. 13, 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  7. Harman, D. 2009. Origin and evolution of the free radicaltheory of aging: a brief personal history, 1954-2009. Biogerontology 10, 773-781. https://doi.org/10.1007/s10522-009-9234-2
  8. Hofseth, L. J. and Ying, L. 2006. Identifying and defusing weapons of mass inflammation in carcinogenesis. Biochim. Biophys. Acta. 1765, 74-84.
  9. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M. and Nabeshima, Y. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322. https://doi.org/10.1006/bbrc.1997.6943
  10. Jung, Y. S., Eun, C. S., Jung, Y. T., Kim, H. J. and Yu, M. H. 2013. Anti-inflammatory effects of Picrasma Quassidides (D.DON) BENN leaves extract. J. Life Sci. 23, 629-636. https://doi.org/10.5352/JLS.2013.23.5.629
  11. Kalyanaraman, B. 2013. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. Redox. Biol. 1, 244-257. https://doi.org/10.1016/j.redox.2013.01.014
  12. Khansari, N., Shakiba, Y. and Mahmoudi, M. 2009. Chronic inflammation and oxidative stress as a major cause of agerelated diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 3, 73-80. https://doi.org/10.2174/187221309787158371
  13. Kim, H. J., Ahn, M. S., Kim, G. H. and Kang, M. H. 2006. Antioxidant and antimicrobial activity of Pleurotus eryngii extracts prepared from different aerial part. Kor. J. Food Sci. Technol. 38, 799-804.
  14. Kim, J. Y., Jung, K. S. and Jeong, H. G. 2004. Suppressive effects of the kahweol and cafestol on cyclooxygenase-2 expression in macrophages. FEBS Lett. 569, 321-326. https://doi.org/10.1016/j.febslet.2004.05.070
  15. Lawrence, T., Willoughby, D. A. and Gilroy, D. W. 2002. Anti-inflammatory lipid mediators and insights into resolution of inflammation. Nat. Rev. Immunol. 2, 787-795. https://doi.org/10.1038/nri915
  16. Lee, S. G., Jeong, H. J., Lee, E. J., Kim, J. B. and Choi, S. W. 2011. Antioxidant and anti-inflammatory activities of ethanol extracts from medicinal herb mixtures. Kor. J. Food Sci. Technol. 43, 200-205. https://doi.org/10.9721/KJFST.2011.43.2.200
  17. Lee, S. J. and Lim, K. T. 2008. Phytoglycoprotein inhibits interleukin-$1{\beta}$ and interleukin-6 via p38 mitogenactivated protein kinase in lipopolysaccharide-stimulated RAW264.7 cells. Naunyn. Schmi. Arch. Pharmacol. 377, 45-54. https://doi.org/10.1007/s00210-007-0253-8
  18. Liochev, S. I. 2013. Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med. 60, 1-4. https://doi.org/10.1016/j.freeradbiomed.2013.02.011
  19. Li, L., Grenard, P., Nhieu, J. T., Julien, B., Mallat, A., Habib, A. and Lotersztajn, S. 2003. Heme oxygenase-1 is an antifibrogenic protein in human hepatic myofibroblasts. Gastroenterology 125, 460-468. https://doi.org/10.1016/S0016-5085(03)00906-5
  20. Lipinski, B. 2011. Hydroxy radical and its scavengers in health and disease. Oxid. Med. Cell Longev. 2011, 809696, 9 pages.
  21. Muller, N., Myint, A. M. and Schwarz, M. J. 2011. Inflammatory biomarkers and depression. Neurotox. Res. 19, 308-318. https://doi.org/10.1007/s12640-010-9210-2
  22. Nakao, A., Otterbein, L. E., Ovehaus, M., Sarady, J. K., Tsung, A., Kimizuka, K., Nalesnik, M. A., Kaizu, T., Uchiyama, T., Liu, F., Murase, N., Bauer, A. J. and Bach, F. H. 2004. Biliverdin protects the functional integrity of a transplanted syngeneic small bowel. Gastroenterology 127, 595-606. https://doi.org/10.1053/j.gastro.2004.05.059
  23. Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  24. Nguyen, T., Huang, H. C. and Pickett, C. B. 2000. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J. Biol. Chem. 275, 15466-15473. https://doi.org/10.1074/jbc.M000361200
  25. Park, C. M., Park, J. Y., Noh, K. H., Shin, J. H. and Song, Y. S. 2011. Taraxacum officinale Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-kappaB modulation in RAW 264.7 cells. J. Ethnopharmacol. 133, 834-842. https://doi.org/10.1016/j.jep.2010.11.015
  26. Pillai, S., Oresajo, C. and Hayward, J. 2005. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - a review. Int. J. Cosmet. Sci. 27, 17-34. https://doi.org/10.1111/j.1467-2494.2004.00241.x
  27. Radi, R., Beckman, J. S., Bush, K. M. and Freeman, B. A. 1991. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244-4250.
  28. Reuter, S., Gupta, S. C., Chaturvedi, M. M. and Aggarwal, B. B. 2010. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49, 1603-1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
  29. Saw, C. L., Wu, Q., Su, Z. Y., Wang, H., Yang, Y., Xu, X., Huang, Y., Khor, T. O. and Kong, A. N. 2013. Effects of natural phytochemicals in Angelica sinensis (Danggui) on Nrf2-mediated gene expression of phase II drug metabolizing enzymes and anti-inflammation. Biopharm. Drug Dispos. 34, 303-311. https://doi.org/10.1002/bdd.1846
  30. Schipper, H. M. 2000. Heme oxygenase-1: role in brain aging and neurodegeneration. Exp. Gerontol. 35, 821-830. https://doi.org/10.1016/S0531-5565(00)00148-0
  31. Shan, Y., Lambrecht, R. W., Donohue, S. E. and Bonkovsky, H. L. 2006. Role of Bach1 and Nrf2 in up-regulation of the heme oxygenase-1 gene by cobalt protoporphyrin. FASEB J. 20, 2651-2653. https://doi.org/10.1096/fj.06-6346fje
  32. Srisook, K., Kim, C. and Cha, Y. N. 2005. Molecular mechanisms involved in enhancing HO-1 expression: de-repression by heme and activation by Nrf2, the "one-two" punch. Antioxid. Redox Signal. 7, 1674-1687. https://doi.org/10.1089/ars.2005.7.1674
  33. Videla, L. A. and Fermandez, V. 1988. Biochemical aspects of cellular oxidative stress. Arch. Biol. Med. Exp. 21, 85-92.
  34. Xie, Q. W., Whisnant, R. and Nathan, C. 1993. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon ${\gamma}$ and bacterial lipopolysaccharide. J. Exp. Med. 177, 1779-1784. https://doi.org/10.1084/jem.177.6.1779
  35. Zhu, Z. Z., Ma, K. J., Ran, X., Zhang, H., Zheng, C. J., Han, T., Zhang, Q. Y. and Qin, L. P. 2011. Analgesic, anti-inflammatory and antipyretic activities of the petroleum ether fraction from the ethanol extract of Desmodium podocarpum. J. Ethnopharmacol. 1333, 1126-1131.