DOI QR코드

DOI QR Code

Socheongja and Socheong 2 Extracts Suppress Lipopolysaccharide-induced Inflammation and Oxidative Stress in RAW 264.7 Macrophages through Activating Nrf2/HO-1 Signaling and Suppressing MAPKs Pathway

RAW 264.7 대식세포에서 Nrf2/HO-1 신호 전달계 활성화와 MAPKs 경로 억제를 통한 소청자와 소청2호의 LPS 매개 염증성 및 산화적 스트레스 반응의 억제

  • Kwon, Da Hye (Open Laboratory for Muscular & Skeletal Disease Control and Department of Biochemistry, Dongeui University College of Korean Medicine) ;
  • Choi, Eun Ok (Open Laboratory for Muscular & Skeletal Disease Control and Department of Biochemistry, Dongeui University College of Korean Medicine) ;
  • Hwang, Hye-Jin (Department of Food and Nutrition, College of Nursing, Healthcare Sciences & Human Ecology, Dongeui University) ;
  • Kim, Kook Jin (Genomine Advanced Biotechnology Research Institute, Genomine Inc.) ;
  • Hong, Su Hyun (Open Laboratory for Muscular & Skeletal Disease Control and Department of Biochemistry, Dongeui University College of Korean Medicine) ;
  • Lee, Dong Hee (Genomine Advanced Biotechnology Research Institute, Genomine Inc.) ;
  • Choi, Yung Hyun (Open Laboratory for Muscular & Skeletal Disease Control and Department of Biochemistry, Dongeui University College of Korean Medicine)
  • 권다혜 (동의대학교 한의과대학 생화학교실 및 근.골격계 질환제어 융합연구실) ;
  • 최은옥 (동의대학교 한의과대학 생화학교실 및 근.골격계 질환제어 융합연구실) ;
  • 황혜진 (동의대학교 의료.보건.생활대학 식품영양학과) ;
  • 김국진 ((주)제노마인) ;
  • ;
  • 이동희 ((주)제노마인) ;
  • 최영현 (동의대학교 한의과대학 생화학교실 및 근.골격계 질환제어 융합연구실)
  • Received : 2017.10.10
  • Accepted : 2018.02.13
  • Published : 2018.02.28

Abstract

Inflammatory response and oxidative stress play critical roles in the development and progression of many human diseases. Therefore, a great deal of attention has been focused on finding functional materials that can control inflammation and oxidative stress simultaneously. The purpose of this study was to investigate the effects of Socheongja and Socheong 2, Korean black seed coat soybean varieties, on the inflammatory and oxidative stress induced by lipopolysaccharide (LPS) in RAW 264.7 macrophages. Our data indicated that the extracts of Socheongja (SCJ) and Socheong 2 (SC2) significantly suppressed LPS-induced production of nitrite oxide (NO) and prostaglandin $E_2$, key pro-inflammatory mediators, by suppressing the expression of inducible NO synthase and cyclooxygenase-2. It was also found that SCJ and SC2 reduced the LPS-induced secretion of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$, which was concomitant with a decrease in the protein levels. In addition, SCJ and SC2 markedly diminished LPS-stimulated intracellular reactive oxygen species accumulation, and effectively enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase (HO)-1 expression. Furthermore, LPS-induced activation of mitogen-activated protein kinases (MAPKs) was abrogated by SCJ and SC2. Taken together, these data suggest that SCJ and SC2 may offer protective roles against LPS-induced inflammatory and oxidative responses in RAW 264.7 macrophages through attenuating MAPKs pathway, and these effects are mediated, at least in part, through activating Nrf2/HO-1 pathway. Given these results, we propose that SCJ and SC2 have therapeutic potential in the treatment of inflammatory and oxidative disorders caused by over-activation of macrophages.

염증 반응과 산화적 스트레스는 다양한 질환의 발생과 진행에 중요한 역할을 담당한다. 따라서 염증과 산화적 스트레스를 동시에 억제할 수 있는 소재의 발굴은 인체 질환 제어에 매우 유용하게 적용될 수 있다. 본 연구의 목적은 RAW 264.7 대식세포에서 검은콩 품종인 소청자와 소청2호 추출물이 염증성 및 산화적 스트레스에 미치는 영향을 알아보기 위함이다. 본 연구의 결과에 의하면 소청자 및 소청2호 추출물은 LPS에 의한 iNOS와 COX-2의 발현을 억제하여 NO와 $PGE_2$의 생성을 억제하였으며, $TNF-{\alpha}$, $IL-1{\beta}$와 같은 염증성 cytokine의 분비와 발현을 감소시켰다. 또한 소청자 및 소청2호 추출물은 LPS로 자극된 세포 내 ROS 축적을 유의적으로 차단시켰고, Nrf2와 HO-1 발현을 증가시켰다. 또한 LPS에 의해 유도된 MAPKs의 활성화도 소청자 및 소청2호 추출물에 의하여 억제되었다. 결론적으로 소청자 및 소청2호 추출물은 RAW 264.7 대식세포에서 MAPKs 경로를 차단시킴으로써 LPS-유도 염증 및 산화 반응에 대한 보호 역할을 할 수 있으며, 이러한 효과에는 최소한 Nrf2/HO-1 경로 활성화가 관련되어 있었다. 이러한 결과를 고려해 볼 때 소청자 및 소청2호 추출물은 대식세포의 과다 활성화로 인한 염증성 및 산화적 반응 차단에 잠재적인 효과가 있음을 일 수 있었다.

Keywords

References

  1. Barnes, S. 1998. Evolution of the health benefits of soy isoflavone. Proc. Soc. Exp. Biol. Med. 217, 386-392. https://doi.org/10.3181/00379727-217-44249
  2. Brue, B., Dehne, N., Grossmann, N., Jung, M., Namgaladze, D., Schmid, T., von Knethen, A. and Weigert, A. 2013. Redox control of inflammation in macrophages. Antioxid. Redox. Signal. 19, 595-637. https://doi.org/10.1089/ars.2012.4785
  3. Cho, B. O., Ryu, H. W., So, Y., Lee, C. W., Jin, C. H., Yook, H. S., Jeong, Y. W., Park, J. C. and Jeong, I. Y. 2014. Anti-inflammatory effect of mangostenone F in lipopolysaccharidestimulated RAW 264.7 macrophages by suppressing $NF-{\kappa}B$ and MAPK activation. Biomol. Ther. 22, 288-294. https://doi.org/10.4062/biomolther.2014.052
  4. Choung, M. G., Baek, I. Y., Kang, S. T., Han, W. Y., Shin, D. C., Moon, H. P. and Kang, K. H. 2001. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.). J. Agric. Food Chem. 49, 5848-5851. https://doi.org/10.1021/jf010550w
  5. Dinarell, C. A. 2000. Proinflammatory cytokines. Chest 118, 503-508. https://doi.org/10.1378/chest.118.2.503
  6. Golden, B. D. and Abramson, S. B. 1999. Selective cyclooxygenase-2 inhibitors. Rheum. Dis. Clin. North. Am. 25, 359-378. https://doi.org/10.1016/S0889-857X(05)70073-9
  7. Gong, G. L. 2001. Studies on the standardization of manufacture and cancer protection and anti-obesity effects of Kochujang, Master Degree dissertation, Pusan National University, Busan, Korea.
  8. Guo, S., Qiu, P., Xu, G., Wu, X., Dong, P., Yang, G., Zheng, J., McClements, D. J. and Xiao, H. 2012. Synergistic anti-inflammatory effects of nobiletin and sulforaphane in lipopolysaccharide-stimulated RAW 264.7 cells. J. Agric. Food Chem. 60, 2157-2164. https://doi.org/10.1021/jf300129t
  9. Higuchi, M., Hisgahi, N., Taki, H. and Osawa, T. 1990. Cytolytic mechanisms of activated macrophages: Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J. Immunol. 144, 1425-1431.
  10. Huang, B. P., Lin, C. H., Chen, H. M., Lin, J. T., Cheng, Y. F. and Kao, S. H. 2015. AMPK activation inhibits expression of proinflammatory mediators through downregulation of PI3K/p38 MAPK and $NF-{\kappa}B$ signaling in murine macrophages. DNA Cell Biol. 34, 133-141. https://doi.org/10.1089/dna.2014.2630
  11. Huang, Y., Li, W., Su, Z. Y. and Kong, A. N. 2015. The complexity of the Nrf2 pathway: beyond the antioxidant response. J. Nutr. Biochem. 26, 1401-1413. https://doi.org/10.1016/j.jnutbio.2015.08.001
  12. Kang, K. A. and Hyun, J. W. 2017. Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance. Toxicol. Res. 33, 1-5. https://doi.org/10.5487/TR.2017.33.1.001
  13. Kasahara, E., Sekiyama, A., Hori, M., Hara, K., Takahashi, N., Konishi, M., Sato, E. F., Matsumoto, S., Okamura, H. and Inoue, M. 2011. Mitochondrial density contributes to the immune response of macrophages to lipopolysaccharide via the MAPK pathway. FEBS Lett. 585, 2263-2268. https://doi.org/10.1016/j.febslet.2011.05.049
  14. Kauppinen, A., Suuronen, T., Ojala, J., Kaarniranta, K. and Salminen, A. 2013. Antagonistic crosstalk between $NF-{\kappa}B$ and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal. 25, 1939-1948. https://doi.org/10.1016/j.cellsig.2013.06.007
  15. Korea seed & Variety service, https://www.seed.go.kr
  16. Lee, D. H., Park, J. S., Lee, Y. S., Sung, S. H., Lee, Y. H. and Bae, S. H. 2017. The hypertension drug, verapamil, activates Nrf2 by promoting p62-dependent autophagic Keap1 degradation and prevents acetaminophen-induced cytotoxicity. BMB Rep. 50, 91-96. https://doi.org/10.5483/BMBRep.2017.50.2.188
  17. Lee, T. S. and Chau, L. Y. 2002. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat. Med. 8, 240-246. https://doi.org/10.1038/nm0302-240
  18. Lim, B. O., Jeong, Y. J., Park, M. H., Kim, J. D., Hwang, S. J. and Yu, B. P. 2007. Immunoregulatory effects of Saengshik on DSS-induced inflammatory bowel disease in mouse model system. J. Kor. Soc. Food Sci. Nutr. 36, 32-42. https://doi.org/10.3746/jkfn.2007.36.1.032
  19. Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A. and Dulak, J. 2016. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell. Mol. Life Sci. 73, 3221-3247. https://doi.org/10.1007/s00018-016-2223-0
  20. Maines, M. D. 1997. The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37, 517-554. https://doi.org/10.1146/annurev.pharmtox.37.1.517
  21. Mann, J. R., Backlund, M. G. and DuBois, R. N. 2005. Mechanism of disease: Inflammatory mediators and cancer prevention. Nat. Clin. Pract. Oncol. 2, 202-210.
  22. Masferrer, J. L., Zweifel, B. S., Manning, P. T., Hauser, S. D., Leahy, K. M., Smith, W. G., Isakson, P. C. and Seibert, K. 1994. Selective inhibition of inducible cyclooxygenase 2 in vivo is anti inflammatory and nonulcerogenic. Proc. Natl. Acad. Sci. USA. 91, 3228-3232. https://doi.org/10.1073/pnas.91.8.3228
  23. Mills, E. L. and O'Neill, L. A. 2016. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol. 46, 13-21. https://doi.org/10.1002/eji.201445427
  24. Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P. and Malik, A. B. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126-1167. https://doi.org/10.1089/ars.2012.5149
  25. Motterlini, R. and Foresti, R. 2014. Heme oxygenase-1 as a target for drug discovery. Antioxid. Redox Signal. 20, 1810-1826. https://doi.org/10.1089/ars.2013.5658
  26. Oh, G. S., Pae, H. O. and Chung, H. T. 2003. Nitric oxide priming protects nitric oxide-mediated apoptosis via heme oxygenase-1 induction. Free Radic. Biol. Med. 34, 1136-1145. https://doi.org/10.1016/S0891-5849(03)00064-9
  27. Otterbein, L. E. and Chai, A. M. 2000. Heme oxygenase: colors of defense against cellular stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, 1029-1037. https://doi.org/10.1152/ajplung.2000.279.6.L1029
  28. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K. and Cobb, M. H. 2001. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153-183.
  29. Pittala, V., Salerno, L., Romeo, G., Modica, M. N. and Siracusa, M. A. 2013. A focus on heme oxygenase-1 (HO-1) inhibitors. Curr. Med. Chem. 20, 3711-3732. https://doi.org/10.2174/0929867311320300003
  30. Raingeaud, J., Whitmarsh, A. J., Barrett, T., Derijard, B. and Davis, R. J. 1996. MKK3- and MKK6-regulated gene expressionis is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell Biol. 16, 1247-1255. https://doi.org/10.1128/MCB.16.3.1247
  31. Record, I. R., Dreosit, I. E. and Mclnerney, J. K. 1995. The antioxidant activity of genistein in vitro. J. Nutr. Biochem. 6, 481-485. https://doi.org/10.1016/0955-2863(95)00076-C
  32. Rural Development Administration National Institute of Crop Science, Republic of Korea, www.nics.go.kr
  33. Ryter, S. W. and Choi, A. M. 2016. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl. Res. 167, 7-34. https://doi.org/10.1016/j.trsl.2015.06.011
  34. Sirisinha, S. 2011. Insight into the mechanisms regulating immune homeostasis in health and disease. Asian Pac. J. Allergy Immunol. 29, 1-14.
  35. Stuehr, H. H., Kwon, N. S., Weise, M. and Nathan, C. 1991. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: and FAD- and FMN-containing flavoprotein. Proc. Natl. Acad. Sci. USA. 88, 7773-7777. https://doi.org/10.1073/pnas.88.17.7773
  36. Tan, H. Y., Wang, N., Li, S., Hong, M., Wang, X. and Feng, Y. 2016. The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxid. Med. Cell. Longeva. 2016, 2795090.
  37. Tomomatsu, H. 1994. Health effects of oligosaccharides. Food Technol. 48, 61-65.
  38. Tsan, M. F. 2006. Toll-like receptors, inflammation and cancer. Semin Cancer Biol. 16, 32-37. https://doi.org/10.1016/j.semcancer.2005.07.004
  39. Wei, H., Cai, Q. and Rahn, R. 1996. Inhibition of UV light and fenton reaction-induced oxidative DNA damage by the soybean isoflacone genistein. Carcinogenesis 17, 73-77. https://doi.org/10.1093/carcin/17.1.73
  40. Willoughby, D. A. 1975. Human arthritis applied to animal models. Towards a better therapy. Ann. Rheum. Dis. 34, 471-478. https://doi.org/10.1136/ard.34.6.471
  41. Yang, J. L., Jang, J. H., Radliakrishnan, V., Kim, Y. H. and Song, Y. S. 2008. ${\beta}$-Glucan suppresses LPS-stimulated NO production through the down-regulation of iNOS expression and $NF-{\kappa}B$ transactivation in raw 264.7 macrophages. Food Sci. Biotechnol. 17, 106-113.