DOI QR코드

DOI QR Code

In Silico 분자결합 분석방법을 활용한 MOP와 베타아사론의 열대집모기 후각단백질 활성 부위에 대한 결합 친화도 비교 분석

In Silico Analysis and Molecular Docking Comparison of Mosquito Oviposition Pheromone and Beta-asarone on the Mosquito Odorant Binding Protein-1

  • 김동찬 (김천대학교 임상병리학과)
  • Kim, Dong-Chan (Department of Biomedical Laboratory Science, Gimcheon University)
  • 투고 : 2018.01.03
  • 심사 : 2018.01.29
  • 발행 : 2018.02.28

초록

베타아사론은 널리 알려진 석창포의 주요 효능 성분이다. 본 연구에서는 모기의 oviposition 페로몬 성분인 MOP와 석창포 효능성분 베타아사론의 열대집모기 후각 단백질 CquiOBP1 활성 부위에 대한 친화도 분석 실험을 컴퓨터 분자결합 분석 방법을 통해 비교하였다. CquiOBP1 후각 단백질의 3차원 구조 정보는 PDB database (PDB ID: 3OGN)를 활용하였다. In silico 결합 분석을 수행하기 위해 PyRx, Autodock Vina, Discovery Studio Version 4.5, and NX-QuickPharm 프로그램을 각 분석 조건에 따라 활용하였다. CquiOBP1 후각단백질 활성 부위에 대한 베타아사론의 결합친화도는 -6.40 kcal/mol으로 나왔으며 이는 -6.00 kcal/mol으로 나온 MOP의 결합친화도 보다 훨씬 더 높고 효율적인 것으로 분석되었다. 리간드와 상호작용 하는 CquiOBP1단백질 활성 부위의 아미노산들 가운데 TRP114가 공히 MOP와 베타아사론과 결합 하였다. CquiOBP1 단백질 활성부위의 아미노산들을 전혀 다른 전기적 성질을 지닌 아미노산으로 치환 시킨 후 분자결합 분석을 해 본 결과 리간드들의 X,Y,Z Grid 값에 현격한 변화가 유도되었으며 결합 친화도 또한 감소되었다. 이러한 결과를 통하여 베타아사론은 CquiOBP1 단백질 활성을 조절하는 리간드로서 효과적으로 작용할 것으로 보인다. 결론적으로 석창포 추출물 또는 베타아사론은 곤충기피제 신물질 연구 개발 분야에 효율적으로 활용할 수 있을 것으로 사료된다.

Beta-asarone is the well-known active ingredient of Rhizoma acori graminei. In this study, we investigated and compared the binding affinity of mosquito oviposition pheromone (MOP; (5R,6S)-6-acetoxy-5-hexadecanolide) and beta-asarone on the A domain of the mosquito odorant binding protein 1 (CquiOBP1) by in silico computational docking studies. The three-dimensional crystallographic structure of CquiOBP1 was obtained from the PDB database (PDB ID: 3OGN). In silico computational auto-docking analysis was performed using PyRx, Autodock Vina, Discovery Studio Version 4.5, and the NX-QuickPharm option based on scoring functions. The beta-asarone showed optimum binding affinity (docking energy) with CquiOBP1 as -6.40 kcal/mol as compared to the MOP (-6.00 kcal/mol). Among the interacting amino acids (LEU76, LEU80, ALA88, MET89, HIS111, TRP114, and TYR122), tryptophan 114 in the CquiOBP1 active site significantly interacted with both MOP and beta-asarone. Amino acids substitution (mutation) from non-polar groups to the polar (or charged) groups of the CquiOBP1 dramatically changed the X, Y, Z grid position and binding affinity of both ligands. These results significantly indicated that beta-asarone could be a more potent ligand to the CquiOBP1 than MOP. Therefore, the extract of Rhizoma acori graminei or beta-asarone can be applied to the fields of insecticidal and repellant biomaterial development.

키워드

참고문헌

  1. Chen, H. P., Zheng, L. S., Yang, K., Lei, N., Geng, Z. F., Ma, P., Cai, Q., Du, S. S. and Deng, Z. W. 2015. Insecticidal and repellant activities of polyacetylenes and lactones derived from Atractylodes lancea rhizomes. Chem. Biodivers 12, 593-598. https://doi.org/10.1002/cbdv.201400161
  2. Irie, Y. and Keung, W. M. 2003. Rhizoma acori graminei and its active principles protect PC-12 cells from the toxic effect of amyloid-beta peptide. Brain Res. 963, 282-289. https://doi.org/10.1016/S0006-8993(02)04050-7
  3. Jung, K. Y., Kho, B. H. and Song, I. B. 1999. The Bibiographical investigation of effect of acorus gramineus soland. J. Sasang Const. Med. 11, 242-251.
  4. Kim, D. C. 2017. Identification of quercetin as a potential band 3 protein antioxidant using ektacytometry and in silico molecular docking technology. Int. J. Appl. Eng. Res. 12, 8812-8816.
  5. Lee, H. K., Park, C. and Ahn, Y. J. 2002. Insecticidal activities of asarones identified in Acorus gramineus rhizome against Nilaparvata lugens (Homoptera: Delphacidae) and Plutella xylostella (Lepidoptera: Yponomeutoidae). Appl. Ento. Zool. 37, 459-464. https://doi.org/10.1303/aez.2002.459
  6. Lee, S. H., Jung, J. K., Park, S. H., Kim, M. S., Han, Y. S., Seo, J. M. and Kim, I. S. 2011. Repellent activity of the extracts of acorus gramineus against mosquito (Culex pipinens pallens). Kor. J. Environ. Agri. 30, 76-81. https://doi.org/10.5338/KJEA.2011.30.1.76
  7. Lim, S., Othman, R., Yusof, R. and Heh, C. 2017. Rational drug discovery of HCV helicase inhibitor: Improved docking accuracy with multiple seedings of Autodock Vina and in situ minimization. Curr. Comput. Aided Drug Des. 13, 160-169. https://doi.org/10.2174/1573409912666161130122622
  8. Mao, Y., Xu, X., Xu, W., Ishida, Y., Leal, W. S., Ames, J. B. and Clardy, J. 2010. Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone. Proc. Natl. Acad. Sci. USA. 107, 19102-19107. https://doi.org/10.1073/pnas.1012274107
  9. Mirzaian, E., Durham, M. J., Hess, K. and Goad, J. A. 2010. Mosquito-borne illnesses in travelers: a review of risk and prevention. Pharmacotherapy 30, 1031-1043. https://doi.org/10.1592/phco.30.10.1031
  10. Misni, N., Nor, Z. M. and Ahmad, R. 2017. Repellent effect of microencapsulated essential oil in lotion formulation against mosquito bites. J. Vector. Borne Dis. 54, 44-53.
  11. Pyzocha, N. J., Chinchen, S. E. and Maurer, D. M. 2017. Zany Over Zika Virus: An Overview of Diagnosis and Treatment Modalities. Curr. Sports. Med. Rep. 16, 109-113. https://doi.org/10.1249/JSR.0000000000000346
  12. Trott, O. and Olson, A. J. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461.