DOI QR코드

DOI QR Code

파킨스병 유전인자인 LRRK2와 상호작용하는 methionyl-tRNA synthetase

Methionyl-tRNA-synthetase is a Novel Interacting Protein of LRRK2

  • 김혜정 (원광대학교 산본병원 인암뇌신경연구센터) ;
  • 호동환 (원광대학교 산본병원 인암뇌신경연구센터) ;
  • 손일홍 (원광대학교 산본병원 인암뇌신경연구센터) ;
  • 설원기 (원광대학교 산본병원 인암뇌신경연구센터)
  • Kim, Hyejung (InAm Neuroscience Research Center, Wonkwang University) ;
  • Ho, Dong Hwan (InAm Neuroscience Research Center, Wonkwang University) ;
  • Son, Ilhong (InAm Neuroscience Research Center, Wonkwang University) ;
  • Seol, Wongi (InAm Neuroscience Research Center, Wonkwang University)
  • 투고 : 2017.10.10
  • 심사 : 2017.12.15
  • 발행 : 2018.02.28

초록

파킨슨병은 두번째로 많이 발병하는 퇴행성 신경질환이며 약 5-10%는 유전된다. Leucine-rich repeat kinase 2(LRRK2)는 그 돌연변이의 일부가 파킨슨병을 일으키는 유전자이다. LRRK2에는 인산화효소와 GTPase 기능이 있는 도메인과 함께 단백질 상호작용에 관여하는 Leucine-rich repeat (LRR), WD40 도메인이 존재하여, LRRK2와 상호작용하는 단백질이 파킨슨병 발병에 중요한 역할을 함을 암시한다. 우리는 이러한 LRRK2와 상호작용하는 단백질을 규명하여 그 단백질의 세포내 기능을 통해 역으로 LRRK2의 기능을 밝히고자 하였다. NIH3T3 세포 용해물을 LRRK2 항체와 IgG로 각각 면역침강하여 LRRK2 항체 침강반응에서만 특이적으로 나타나는 단백질 밴드를 질량 분석한 결과, methionyl-tRNA synthetase (MRS)로 나타났다. LRRK2와 MRS의 상호작용은 면역침강반응과 GST-pull down assay를 통해 확인됐다. 병을 유발하는, LRRK2의 돌연변이인 G2019S가 인산화효소 활성을 증가시키므로 LRRK2가 MRS를 인산화하는 지를 조사한 결과, LRRK2재조합단백질은 MRS 단백질을 인산화 하지 않았다. 또한 이들 두 단백질의 각각의 양 증가가 상대 단백질의 양 증가, 즉 안정성에 영향을 미치는 지를 조사하였으나 안정성의 변화를 관찰하지 못하였다. 결론적으로, MRS는 LRRK2와 상호작용을 하지만 LRRK2 인산화효소의 기질은 아니다.

Parkinson's disease (PD) is the most common movement disorder and the second most common neurodegenerative disease after Alzheimer's disease. Approximately 5~10% of PD patients are familial PD cases. Leucine-rich repeat kinase 2 (LRRK2) has been known to be a causal gene of PD when it is mutated. LRRK2 contains the functional kinase and GTPase domains as well as leucine-rich repeat (LRR) and WD40 domains that are known to play critical roles for protein-protein interaction, suggesting that LRRK2-interacting proteins are important regulators for PD pathogenesis. In an effort to identify proteins interacting with LRRK2, we carried out co-immunoprecipitation of LRRK2 antibody using extracts of NIH3T3 cells that express LRRK2 at a relatively high level. The mass spectrometry analysis of a precipitated band revealed that the co-precipitated band was methionyl-tRNA synthetase (MRS), an ancient enzyme that transfers methionin to its cognate tRNA. The interaction of MRS with LRRK2 was confirmed again by co-immunoprecipitation of endogenous proteins and GST pull-down assays. However, LRRK2 did not phosphorylate recombinant MRS protein in in vitro kinase assays, and over-expression of LRRK2 or MRS did not affect the stability of its partner protein. Our data indicate that LRRK2 interacts with but does not phosphorylate MRS, and the stability of each partner is not affected by the other.

키워드

참고문헌

  1. Belin, A. C. and Westerlund, M. 2008. Parkinson's disease: a genetic perspective. Febs. J. 275, 1377-1383. https://doi.org/10.1111/j.1742-4658.2008.06301.x
  2. Factor, S. A. 2001. Parkinson's Disease: initial treatment with levodopa or dopamine agonists. Curr. Treat. Options Neurol. 3, 479-493. https://doi.org/10.1007/s11940-001-0011-z
  3. Greggio, E. and Cookson, M. R. 2009. Leucine-rich repeat kinase 2 mutations and Parkinson's disease: three questions. ASN Neuro. 1, e00002.
  4. Guerreiro, P. S., Gerhardt, E., Lopes da Fonseca, T., Bahr, M., Outeiro, T. F. and Eckermann, K. 2015. LRRK2 promotes tau accumulation, aggregation and release. Mol. Neurobiol. 53, 3124-3135.
  5. Guerreiro, P. S., Huang, Y., Gysbers, A., Cheng, D. and Gai, W. P., et al. 2013. LRRK2 interactions with alpha-synuclein in Parkinson's disease brains and in cell models. J. Mol. Med. (Berl) 91, 513-522. https://doi.org/10.1007/s00109-012-0984-y
  6. Hardie, D. G. 1990. Roles of protein kinases and phosphatases in signal transduction. Symp. Soc. Exp. Biol. 44, 241-255.
  7. Hatcher, J. M., Choi, H. G., Alessi, D. R. and Gray, N. S. 2017. Small-Molecule Inhibitors of LRRK2. Adv. Neurobiol. 14, 241-264.
  8. Ho, D. H., Kim, H., Kim, J., Sim, H. and Ahn, H., et al. 2015. Leucine-Rich Repeat Kinase 2 (LRRK2) phosphorylates p53 and induces p21(WAF1/CIP1) expression. Mol. Brain 8, 54. https://doi.org/10.1186/s13041-015-0145-7
  9. Hwang, O. 2013. Role of oxidative stress in Parkinson's disease. Exp. Neurobiol. 22, 11-17. https://doi.org/10.5607/en.2013.22.1.11
  10. Kachergus, J., Mata, I. F., Hulihan, M., Taylor, J. P. and Lincoln, S., et al. 2005. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am. J. Hum. Genet. 76, 672-680. https://doi.org/10.1086/429256
  11. Kuwahara, T., Inoue, K., D'Agati, V. D., Fujimoto, T. and Eguchi, T., et al. 2016. LRRK2 and RAB7L1 coordinately regulate axonal morphology and lysosome integrity in diverse cellular contexts. Sci. Rep. 6, 29945. https://doi.org/10.1038/srep29945
  12. Kwon, N. H., Kang, T., Lee, J. Y., Kim, H. H. and Kim, H. R., et al. 2011. Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3. Proc. Natl. Acad. Sci. USA. 108, 19635-19640. https://doi.org/10.1073/pnas.1103922108
  13. Manzoni, C. and Lewis, P. A. 2017. LRRK2 and autophagy. Adv. Neurobiol. 14, 89-105.
  14. Martin, I., Dawson, V. L. and Dawson, T. M. 2011. Recent advances in the genetics of Parkinson's disease. Annu. Rev. Genomics Hum. Genet. 12, 301-325. https://doi.org/10.1146/annurev-genom-082410-101440
  15. Martin, I., Kim, J. W., Lee, B. D., Kang, H. C. and Xu, J. C., et al. 2014. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease. Cell 157, 472-485. https://doi.org/10.1016/j.cell.2014.01.064
  16. Monfrini, E. and Di Fonzo, A. 2017. Leucine-rich repeat kinase (LRRK2) genetics and Parkinson'sdisease. Adv. Neurobiol. 14, 3-30.
  17. Paisan-Ruiz, C., Jain S., Evans, E. W., Gilks, W. P. and Simon, J., et al. 2004. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595-600. https://doi.org/10.1016/j.neuron.2004.10.023
  18. Seol, W. 2010. Biochemical and molecular features of LRRK2 and its pathophysiological roles in Parkinson's disease. BMB Rep. 43, 233-244. https://doi.org/10.5483/BMBRep.2010.43.4.233
  19. Seol, W., Mahon, M. J., Lee, Y. K. and Moore, D. D. 1996. Two receptor interacting domains in the nuclear hormone receptor corepressor RIP13/N-CoR. Mol. Endocrinol. 10, 1646-1655.
  20. Shin, N., Jeong, H., Kwon, J., Heo, H. Y. and Kwon, J. J., et al. 2008. LRRK2 regulates synaptic vesicle endocytosis. Exp. Cell Res. 314, 2055-2065 https://doi.org/10.1016/j.yexcr.2008.02.015
  21. Tanner, C. M. and Goldman, S. M. 1996. Epidemiology of Parkinson's disease. Neurol. Clin. 14, 317-335. https://doi.org/10.1016/S0733-8619(05)70259-0
  22. Woese, C. R., Olsen, G. J., Ibba, M. and Soll, D. 2000. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev. 64, 202-236. https://doi.org/10.1128/MMBR.64.1.202-236.2000
  23. Yun, H. J., Kim, H., Ga, I., Oh, H. and Ho, D. H., et al. 2015. An early endosome regulator, Rab5b, is an LRRK2 kinase substrate. J. Biochem. 157, 485-495. https://doi.org/10.1093/jb/mvv005
  24. Yun, H. J., Park, J., Ho, D. H., Kim, H. and Kim, C. H., et al. 2013. LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Exp. Mol. Med. 45, e36 https://doi.org/10.1038/emm.2013.68
  25. Zimprich, A., Biskup, S., Leitner, P., Lichtner, P. and Farrer, M., et al. 2004. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601-607. https://doi.org/10.1016/j.neuron.2004.11.005