참고문헌
- Belin, A. C. and Westerlund, M. 2008. Parkinson's disease: a genetic perspective. Febs. J. 275, 1377-1383. https://doi.org/10.1111/j.1742-4658.2008.06301.x
- Factor, S. A. 2001. Parkinson's Disease: initial treatment with levodopa or dopamine agonists. Curr. Treat. Options Neurol. 3, 479-493. https://doi.org/10.1007/s11940-001-0011-z
- Greggio, E. and Cookson, M. R. 2009. Leucine-rich repeat kinase 2 mutations and Parkinson's disease: three questions. ASN Neuro. 1, e00002.
- Guerreiro, P. S., Gerhardt, E., Lopes da Fonseca, T., Bahr, M., Outeiro, T. F. and Eckermann, K. 2015. LRRK2 promotes tau accumulation, aggregation and release. Mol. Neurobiol. 53, 3124-3135.
- Guerreiro, P. S., Huang, Y., Gysbers, A., Cheng, D. and Gai, W. P., et al. 2013. LRRK2 interactions with alpha-synuclein in Parkinson's disease brains and in cell models. J. Mol. Med. (Berl) 91, 513-522. https://doi.org/10.1007/s00109-012-0984-y
- Hardie, D. G. 1990. Roles of protein kinases and phosphatases in signal transduction. Symp. Soc. Exp. Biol. 44, 241-255.
- Hatcher, J. M., Choi, H. G., Alessi, D. R. and Gray, N. S. 2017. Small-Molecule Inhibitors of LRRK2. Adv. Neurobiol. 14, 241-264.
- Ho, D. H., Kim, H., Kim, J., Sim, H. and Ahn, H., et al. 2015. Leucine-Rich Repeat Kinase 2 (LRRK2) phosphorylates p53 and induces p21(WAF1/CIP1) expression. Mol. Brain 8, 54. https://doi.org/10.1186/s13041-015-0145-7
- Hwang, O. 2013. Role of oxidative stress in Parkinson's disease. Exp. Neurobiol. 22, 11-17. https://doi.org/10.5607/en.2013.22.1.11
- Kachergus, J., Mata, I. F., Hulihan, M., Taylor, J. P. and Lincoln, S., et al. 2005. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am. J. Hum. Genet. 76, 672-680. https://doi.org/10.1086/429256
- Kuwahara, T., Inoue, K., D'Agati, V. D., Fujimoto, T. and Eguchi, T., et al. 2016. LRRK2 and RAB7L1 coordinately regulate axonal morphology and lysosome integrity in diverse cellular contexts. Sci. Rep. 6, 29945. https://doi.org/10.1038/srep29945
- Kwon, N. H., Kang, T., Lee, J. Y., Kim, H. H. and Kim, H. R., et al. 2011. Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3. Proc. Natl. Acad. Sci. USA. 108, 19635-19640. https://doi.org/10.1073/pnas.1103922108
- Manzoni, C. and Lewis, P. A. 2017. LRRK2 and autophagy. Adv. Neurobiol. 14, 89-105.
- Martin, I., Dawson, V. L. and Dawson, T. M. 2011. Recent advances in the genetics of Parkinson's disease. Annu. Rev. Genomics Hum. Genet. 12, 301-325. https://doi.org/10.1146/annurev-genom-082410-101440
- Martin, I., Kim, J. W., Lee, B. D., Kang, H. C. and Xu, J. C., et al. 2014. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease. Cell 157, 472-485. https://doi.org/10.1016/j.cell.2014.01.064
- Monfrini, E. and Di Fonzo, A. 2017. Leucine-rich repeat kinase (LRRK2) genetics and Parkinson'sdisease. Adv. Neurobiol. 14, 3-30.
- Paisan-Ruiz, C., Jain S., Evans, E. W., Gilks, W. P. and Simon, J., et al. 2004. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595-600. https://doi.org/10.1016/j.neuron.2004.10.023
- Seol, W. 2010. Biochemical and molecular features of LRRK2 and its pathophysiological roles in Parkinson's disease. BMB Rep. 43, 233-244. https://doi.org/10.5483/BMBRep.2010.43.4.233
- Seol, W., Mahon, M. J., Lee, Y. K. and Moore, D. D. 1996. Two receptor interacting domains in the nuclear hormone receptor corepressor RIP13/N-CoR. Mol. Endocrinol. 10, 1646-1655.
- Shin, N., Jeong, H., Kwon, J., Heo, H. Y. and Kwon, J. J., et al. 2008. LRRK2 regulates synaptic vesicle endocytosis. Exp. Cell Res. 314, 2055-2065 https://doi.org/10.1016/j.yexcr.2008.02.015
- Tanner, C. M. and Goldman, S. M. 1996. Epidemiology of Parkinson's disease. Neurol. Clin. 14, 317-335. https://doi.org/10.1016/S0733-8619(05)70259-0
- Woese, C. R., Olsen, G. J., Ibba, M. and Soll, D. 2000. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev. 64, 202-236. https://doi.org/10.1128/MMBR.64.1.202-236.2000
- Yun, H. J., Kim, H., Ga, I., Oh, H. and Ho, D. H., et al. 2015. An early endosome regulator, Rab5b, is an LRRK2 kinase substrate. J. Biochem. 157, 485-495. https://doi.org/10.1093/jb/mvv005
- Yun, H. J., Park, J., Ho, D. H., Kim, H. and Kim, C. H., et al. 2013. LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Exp. Mol. Med. 45, e36 https://doi.org/10.1038/emm.2013.68
- Zimprich, A., Biskup, S., Leitner, P., Lichtner, P. and Farrer, M., et al. 2004. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601-607. https://doi.org/10.1016/j.neuron.2004.11.005